Advertisement

Clays and Clay Minerals

, Volume 37, Issue 5, pp 439–445 | Cite as

Effects of Dry Grinding and Leaching on the Crystal Structure of Chrysotile

  • Helèné Suquet
Article

Abstract

The structural damage produced by dry grinding and acid leaching of chrysotile was studied by transmission and scanning electron microscopy, infrared spectroscopy, X-ray powder diffraction, and thermogravimetric analysis. Severe dry grinding converted the chrysotile fibers into fragments having strong potential basic reaction sites. These sites were immediately neutralized by molecules present in the atmosphere (e.g., H2O, CO2). Acid leaching transformed the chrysotile fibers into very porous, non-crystalline silica, which was easily fractured into short fragments. The damage produced in the chrysotile structure by grinding or leaching was assessed by monitoring the intensity of various infrared absorption bands.

Key Words

Acid leaching Asbestos Chrysotile Dry grinding Infrared spectroscopy Thermal gravimetric analysis Transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, M. C. and Taylor, H. F. W. (1963) The dehydration of chrysotile in air and under hydrothermal conditions: Miner. Mag. 33, 467–482.Google Scholar
  2. Brindley, G. W. and Hayami, R. (1964) Kinetics and mechanisms of dehydration and recrystallization of serpentine: Clays & Clay Minerals 34, 35–47.Google Scholar
  3. Farmer, V. C. (1974) The Infrared Spectra of Minerals: Mineralogical Society, London, 342–348.CrossRefGoogle Scholar
  4. Fripiat, J. J. and Mendelovici, E. (1968) Dérivés des silicates. I–Le dérivé méthylé du chrysotile: Bull. Soc. Chim. France 2, 483–492.Google Scholar
  5. Fournier, J. and Pézerat, H. (1982) Mode d’adsorption des hydrocarbures polycycliques aromatiques sur les amiantes. Cas du phénanthrène: J. Chim. Phys. 79, 589–596.CrossRefGoogle Scholar
  6. Fournier, J. and Pézerat, H. (1986) Studies on surface properties of asbestos. III–Interactions between asbestos and polynuclear aromatic hydrocarbons: Environ. Res. 41, 276–295.CrossRefGoogle Scholar
  7. Gronow, J. R. (1987) The dissolution of asbestos fibers in water: Clay Miner. 22, 21–35.CrossRefGoogle Scholar
  8. Harrington, J. S. and Smith, M. (1964) Studies of hydrocarbons on mineral dusts, the evolution of 3–4 benzopyrene and oils from asbestos and coal dusts by serum: Arch. Environ. Health 8, 453–458.CrossRefGoogle Scholar
  9. Hodgson, A. A. (1979) Chemistry and Physics of Asbestos: in Asbestos, Vol. 1, L. Michaels and S. S. Chissick, eds., Wiley, New York, 83–110.Google Scholar
  10. Jolicoeur, C. and Duchesne, D. (1981) Infrared and thermogravimetric studies of the thermal degradation of chrysotile asbestos fibers: Evidence for matrix effects: Can. J. Chem. 59, 1521–1526.CrossRefGoogle Scholar
  11. Luys, M. J., Deroy, G., Vansant, E. F., and Adams, F. (1982) Characteristics of asbestos minerals: J. Chem. Soc. Faraday Trans. I, 78, 3561–3571.CrossRefGoogle Scholar
  12. Mackenzie, R. C. (1957) The Differential Thermal Investigation of Clays: Mineralogical Society, London, 331–333.Google Scholar
  13. Pacco, F., Van Gangh, L., and Fripiat, J. J. (1976) Etude par spectroscopic infrarouge et résonance magnétique nucléaire de la distribution homogène des groupes silanols d’un gel de silice fibreux: Bull. Soc. Chim. France 5, 1021–1026.Google Scholar
  14. Papirer, E. and Roland, P. (1981) Grinding of chrysotile in hydrocarbons, alcohol, and water: Clays & Clay Minerals 29, 161–170.CrossRefGoogle Scholar
  15. Roe, F. J. C., Walters, M. A., and Harrington, J. S. (1966) Tumours initiation by natural and contaminating asbestos: Int. J. Cancer 1, 491–495.CrossRefGoogle Scholar
  16. Selikoff, I. J., Hammond, E. C., and Churg, J. (1968) Asbestos exposure, smoking and neoplasma: J. Amer. Med. Assoc. 204, 106–112.CrossRefGoogle Scholar
  17. Selikoff, I. J., Seidman, H., and Hammond, E. C. (1980) Mortality effects of cigarette smoking among amosite asbestos factory workers. J. Natl. Cancer Inst. 65, 507–513.Google Scholar
  18. Suquet, H. (1989) The differences between adsorption properties of two Rhodesian chrysotile samples. Relation between the DTA features introduced by leaching and grinding: Can. J. Chem. 67, (in press).Google Scholar
  19. Suquet, H., Malard, C, Fournier, J., and Pézerat, H. (1987) Capacité d’échange cationique et charge de surface du chrysotile: Bull. Miner. 110, 711–715.Google Scholar
  20. Thomassin, N., Goni, J. H., Touray, J. C., and Jaurand, M. C. (1977) An XPS study of the dissolution kinetics of chrysotile in 0.1 N oxalic acid at different temperatures. Phys. Chem. Miner. 1, 385–398.CrossRefGoogle Scholar
  21. Wicks, F. F. and O’Hanley, D. S. (1988) Serpentine minerals: Structures and properties: in Hydrous Phyllosilicates, Reviews in Mineralogy, S. W. Bailey, ed., Miner. Soc. America, Washington, D.C., 113–114.Google Scholar
  22. Yariv, S. and Heller-Kallai, L. (1975) The relationship between the IR spectra of serpentines and their structures: Clays & Clay Minerals 23, 145–152.CrossRefGoogle Scholar
  23. Young, G. J. and Healey, F. H. (1954) The physical structure of asbestos: J. Phys. Chem. 58, 881–884.CrossRefGoogle Scholar
  24. Zussman, J. and Brindley, G. W. (1957) Electron diffraction studies of serpentine minerals: Amer. Mineral. 42, 133–153.Google Scholar

Copyright information

© The Clay Minerals Society 1989

Authors and Affiliations

  • Helèné Suquet
    • 1
  1. 1.Laboratoire de Réactivité de Surface et StructureU.A. 1106 CNRS Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations