Clays and Clay Minerals

, Volume 37, Issue 5, pp 433–438 | Cite as

A First-Order Markov-Chain Model of Zeolite Crystallization

  • Daniel B. Hawkins


A method using a finite, first-order Markov chain is presented to estimate rate constants for zeolite formation from experimental nuclear magnetic resonance (NMR) data on the abundance of different silica oligomers. An experimental design is suggested by which this method can be implemented. The method uses weighted least squares to estimate transition probabilities from aggregate NMR data. Rate constants, equilibrium constants, and free energies of elementary zeolite-forming reactions can be estimated. Hypothetical zeolite-forming reactions can also be modeled. An example of modeling, using hypothetical data, shows how zeolite formation can result from reactions involving mainly silica cyclic tetramers.

Key Words

Crystallization Markov-chain model Rate constants Silica oligomers Zeolites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruns, W., Motoc, I., and O’Drisco, U, K. F. (1981) Monte Carlo Applications in Polymer Science: Springer-Verlag, New York, 180 pp.CrossRefGoogle Scholar
  2. Cary, L. W., de Jong, B. H. W. S., and Dibble, W. E. (1982) A 29Si NMR study of silica species in dilute aqueous solution: Geochim. Cosmochim. Acta 46, 1317–1321.CrossRefGoogle Scholar
  3. Carman, C.J., Harrington, R. A., and Wilkes, C. E. (1977) Monomer sequence distribution in ethylene-propylene rubber measured by l3C NMR. 3. Use of reaction probability model: Macromolecules 10, 536–544.CrossRefGoogle Scholar
  4. Cheng, H. N. (1982) Markovian statistics and Simplex algorithm for carbon-13 nuclear magnetic resonance spectra of ethylene-propylene copolymers: Anal. Chem. 54, 1828–1833.CrossRefGoogle Scholar
  5. Daniels, F. and Alberty, R. A. (1966) Physical Chemistry: 3rd ed., Wiley, New York, 767 pp.Google Scholar
  6. Davis, J. C. (1986) Statistics and Data Analysis in Geology: 2nd ed., Wiley, New York, 646 pp.Google Scholar
  7. Donahoe, R. J. and Liou, J. G. (1985) An experimental study on the process of zeolite formation: Geochim. Cosmochim. Acta 49, 2349–2360.CrossRefGoogle Scholar
  8. Formosinho, S. J. and Miguel, M. M. daG. (1979) Markov chains for plotting the course of complex reactions: J. Chem. Ed. 56, 582–586.CrossRefGoogle Scholar
  9. Harbaugh, J. W. and Bonham-Carter, G. (1970) Computer Simulation in Geology: Wiley, New York, 575 pp.Google Scholar
  10. Hawkins, D. B. (1981) Kinetics of glass dissolution and zeolite formation under hydrothermal conditions: Clays & Clay Minerals 29, 331–340.CrossRefGoogle Scholar
  11. Hayhurst, D. T. and Sand, L. B. (1977) Crystallization kinetics and properties of Na, K-phillipsites: in Proc. 4th Int. Zeolite Conf., Chicago, 1977, J. R. Katzer, ed., Amer. Chem. Soc, Symp. Series 40, 219–232.Google Scholar
  12. Kalbfleisch, J. D. and Lawless, J. F. (1984) Least-squares estimation of transition probabilities from aggregate data: Can. Jour. Statistics 12, 169–182.CrossRefGoogle Scholar
  13. Kemeny, J. G. and Snell, J. L. (1976) Finite Markov Chains: Springer-Verlag, New York, 224 pp.Google Scholar
  14. Lin, C. and Harbaugh, J. W. (1984) Graphic Display of Two-and Three-Dimensional Markov Computer Models in Geology: Van Nostrand Reinhold, New York, 179 pp.Google Scholar
  15. Lowry, G. G., ed. (1970) Markov Chains and Monte Carlo Calculations in Polymer Science: Dekker, New York, 329 pp.Google Scholar
  16. Strang, G. (1976) Linear Algebra and Its Applications: Academic Press, New York, 374 pp.Google Scholar

Copyright information

© The Clay Minerals Society 1989

Authors and Affiliations

  • Daniel B. Hawkins
    • 1
  1. 1.Department of Geology/GeophysicsThe University of Alaska FairbanksFairbanksUSA

Personalised recommendations