Advertisement

Clays and Clay Minerals

, Volume 37, Issue 5, pp 419–432 | Cite as

Distribution and Origin of Analcime in Marginal Lacustrine Mudstones of the Green River Formation, South-Central Uinta Basin, Utah

  • Robert R. Remy
  • Ray E. Ferrell
Article

Abstract

X-Ray powder diffraction and thin section analyses indicate that marginal lacustrine mudstones of the Green River Formation in the south-central Uinta basin, Utah, contain abundant analcime. The analcime has a low Si/Al ratio (<2.31) and occurs as very fine grained disseminated crystals and, to a lesser extent, as coarser-grained pore-filling cement. Analcime-rich mudstones and associated sandstones, siltstones, and carbonates lack volcanic detritus and zeolites other than analcime, thus making it difficult to support the concept that the analcime formed from precursor zeolites derived from volcanic glass altered in saline, alkaline-lake water. Abundant dolomite, syneresis cracks, and the absence of freshwater pelecypods and gastropods suggest that the lake (Lake Uinta) was moderately saline and alkaline. The restricted illite-illite/smectite clay mineral suite in the analcime-rich mudstones suggests that detrital clays significantly altered in a moderately saline and alkaline environment, thereby providing a source of Si and Al for the formation of analcime.

Red mudstones contain twice as much analcime as green mudstones (14 vs. 7 wt. %). Green mudstones have a day mineral suite consisting of illite (44 wt. %), mixed-layer illite/smectite (35 wt. %), smectite (12 wt. %), and minor kaolinite (4 wt. %) and chlorite (5 wt. %), whereas red mudstones have a more restricted day mineral suite consisting ofillite (68 wt. %) and mixed-layer illite/smectite (26 wt. %) with very minor smectite, chlorite, and kaolinite. Periodic minor fluctuations in lake level probably exposed large areas of shallow lacustrine-interdistributary green mud. Evaporative pumping on the exposed mudflats concentrated the moderately saline and alkaline-lake water, thereby producing Na-rich brines that enhanced the formation of analcime by accelerating the alteration of detrital clays and, perhaps, other minerals. Oxidation of iron from altered iron-bearing minerals stained the analcime-rich mud red with iron hydroxide or oxide (perhaps hematite). The overall reaction from green to red mud (mudstones) was probably: detrital phyllosilicates + Na-brine + iron-bearing minerals + oxygen → analcime + iron hydroxide or iron oxide.

Key Words

Analcime Diagenesis Illite/smectite Mudstone X-ray powder diffraction Zeolite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, E. Y. (1981) Petrographic characteristics and provenance of fluvial sandstone, Sunnyside oil-impregnated sandstone deposit, Carbon County, Utah: M.S. thesis, University of Utah, Salt Lake City, Utah, 112 pp.Google Scholar
  2. Boles, J. R. (1971) Synthesis of analcime from natural heulandite and clinoptilolite: Amer. Mineral. 56, 1724–1734.Google Scholar
  3. Bradley, W. H. (1929) The occurrence and origin of analcite and meerschaum beds in the Green River Formation of Utah, Colorado, and Wyoming: U.S. Geol. Surv. Prof. Pap. 158-A, 7 pp.Google Scholar
  4. Bradley, W. H. (1931) Origin and microfossils of the oil shale of the Green River Formation of Colorado and Utah: U.S. Geol. Surv. Prof. Pap. 168, 56 pp.Google Scholar
  5. Brobst, D. A. and Tucker, J. D. (1973) X-ray mineralogy of the Parachute Creek Member, Green River Formation, in the northern Piceance Creek basin, Colorado: U.S. Geol. Surv. Prof. Pap. 803, 53 pp.Google Scholar
  6. Brobst, D. A. and Tucker, J. D. (1974) Composition and relation of analcime to diagenetic dawsonite in oil shale and tuff in the Green River Formation, Piceance Creek basin, northwestern Colorado: U.S. Geol. Surv. J. Res. 2, 35–39.Google Scholar
  7. Cashion, W. B. and Donnell, J. R. (1974) Revision of nomenclature of the upper part of the Green River Formation, Piceance Creek basin, Colorado, and eastern Uinta basin, Utah: U.S. Geol. Surv. Bull. 1394-G, G1–G9.Google Scholar
  8. Cole, R. D. and Picard, W. D. (1978) Comparative mineralogy of nearshore and offshore lacustrine lithofacies, Parachute Creek Member of the Green River Formation, Piceance Creek basin, Colorado, and eastern Uinta basin, Utah: Geol. Soc. Amer. Bull. 89, 1441–1454.CrossRefGoogle Scholar
  9. Collinson, J. D. and Thompson, D. B. (1982) Sedimentary Structures: George Allen & Unwin, London, 194 pp.Google Scholar
  10. Cook, H. E., Johnson, P. D., Matti, J. C., and Zemmels, I. (1975) Methods of sample preparation and X-ray diffraction data analysis, X-ray Mineralogy Laboratory, Deep Sea Drilling Project, University of California, Riverside: in Initial Reports of the Deep Sea Drilling Project 28, A. G. Kaneps, ed., U.S. Gov. Print. Office, Washington, D.C., 999–1007.Google Scholar
  11. Coombs, D. S. and Whetten, J. T. (1967) Composition of analcime from sedimentary and burial metamorphic rocks: Geol. Soc. Amer. Bull. 78, 269–282.CrossRefGoogle Scholar
  12. Desborough, G. A. (1975) Authigenic albite and potassium feldspar in the Green River Formation, Colorado and Wyoming: Amer. Mineral. 60, 235–239.Google Scholar
  13. Dickinson, W. R., Lawton, T. F., and Inman, K. F. (1986) Sandstone detrital modes, central Utah foreland region: Stratigraphic record of Cretaceous-Paleogene tectonic evolution: J. Sed. Petrol. 56, 276–293.Google Scholar
  14. Dyni, J. R. (1976) Trioctahedral smectite in the Green River Formation, Duchesne County, Utah: U.S. Geol. Surv. Prof. Pap. 967, 14 pp.Google Scholar
  15. Dyni, J. R. (1985) Clay mineralogy of the Green River Formation: in Clays and Clay Minerals, Western Colorado & Eastern & Central Utah, R. B. Hall, compiler, Int. Clay Conf., Denver, Fieldtrip Guidebook, 5–8.Google Scholar
  16. Eugster, H. P. and Hardie, L. A. (1978) Saline lakes: in Lakes Chemistry, Geology, Physics, A. Lerman, ed., Springer-Verlag, New York, 237–293.Google Scholar
  17. Ferrell, R. E. and Carpenter, P. K. (1989) Application of the electron microprobe and image analyzer in the study of clays: in Electron Beam Techniques for the Study of Clay Minerals, CMS Workshop Lectures, I. D. W. Mackinnon and F. A. Mumpton, eds., The Clay Mineral Society, Bloomington, Indiana (in press).Google Scholar
  18. Fouch, T. D., Cashion, W. B., Ryder, R. T., and Campbell, J. A. (1976) Field guide to lacustrine and related non-marine depositional environments in Tertiary rocks, Uinta basin, Utah: in Studies in Colorado Field Geology, R. C. Epis and R. J. Weimer, eds., Prof. Contr. Colorado School of Mines 8, 358–385.Google Scholar
  19. Fouch, T. D., Hanley, J. H., Forester, R. M., Keighin, C. W., Pitman, J. K., and Nichols, D. J. (1987) Chart showing lithology, mineralogy, and paleontology of the nonmarine North Horn Formation and Flagstaff Member of the Green River Formation, Price Canyon, central Utah: A principal reference section: U.S. Geol. Surv. Map I-1797-A.Google Scholar
  20. Franczyk, K. J., Pitman, J. K., Cashion, W. B., Dyni, J. R., Fouch, T. D., Johnson, R. C., Chan, M. A., Donnell, J. R., Lawton, T. F., and Remy, R. R. (1989) Evolution of Resource-Rich Foreland and Intermontane Basins in Eastern Utah and Western Colorado: American Geophysical Union, Washington, D.C., 28th Int. Geol. Cong. Field Trip Guidebook T-324, 53 pp.Google Scholar
  21. Goodwin, J. H. (1973) Analcime and K-feldspar in tuffs of the Green River Formation, Wyoming: Amer. Mineral. 58, 93–105.Google Scholar
  22. Goodwin, J. H. and Surdam, R. C. (1967) Zeolitization of tuffaceous rocks of the Green River Formation, Wyoming: Science 157, 307–308.CrossRefGoogle Scholar
  23. Hay, R. L. (1966) Zeolites and zeolitic reactions in sedimentary rocks: Geol. Soc. Amer. Spec. Paper 85, 130 pp.Google Scholar
  24. Hay, R. L. (1970) Silicate reactions in three lithofacies of a semi-arid basin, Olduvai Gorge, Tanzania: Mineral. Soc. Amer. Spec. Pap. 3, 237–255.Google Scholar
  25. Hay, R. L. (1977) Geology of zeolites in sedimentary rocks: in Mineralogy and Geology of Natural Zeolites, F. A. Mumpton, ed., Reviews in Mineralogy 4, Mineralogical Society of America, Washington, D.C., 53–64.CrossRefGoogle Scholar
  26. Hay, R.L. (1978) Geologic occurrence of zeolites: in Natural Zeolites: Occurrence, Properties, Use, L. B. Sand and F. A. Mumpton, eds., Pergamon Press, Elmsford, New York, 135–143.Google Scholar
  27. Hay, R. L. and Guldman, S. G. (1986) Silicate diagenesis in sediments of Searles Lake, California: in Prog, and Abstracts, 23rd Annual Meeting of the Clay Minerals Society, Jackson, Mississippi, 1986, p. 15.Google Scholar
  28. Hay, R. L. and Moiola, R. J. (1963) Authigenic silicate minerals in Searles Lake, California: Sedimentology 2, 312–332.CrossRefGoogle Scholar
  29. Hosterman, J. W. and Dyni, J. R. (1972) Clay mineralogy of the Green River Formation, Piceance Creek basin, Colorado–A preliminary study: U.S. Geol. Surv. Prof. Pap. 800-D, D159–D163.Google Scholar
  30. Hsü, K. J. and Siegenthaler, C. (1969) Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem: Sedimentology 12, 11–25.CrossRefGoogle Scholar
  31. Iijima, A. and Hay, R. L. (1968) Analcime composition in tuffs of the Green River Formation of Wyoming: Amer. Mineral. 53, 184–200.Google Scholar
  32. Jacob, A. F. (1969) Delta facies of the Green River Formation (Eocene), Carbon and Duchesne Counties, Utah: Ph.D. dissertation, University of Colorado, Boulder, Colorado, 97 pp.Google Scholar
  33. Johnson, R. C. (1985) Early Cenozoic history of the Uinta and Piceance Creek basins, Utah and Colorado, with special reference to the development of Eocene Lake Unita: in Cenozoic Paleogeography of the West-Central United States, R. M. Flores and S. S. Kaplan, eds., Rocky Mountain Section–Soc. Econ. Paleontol. Mineral., 247–276.Google Scholar
  34. Jones, B. F. and Bowser, C. J. (1978) The mineralogy and related chemistry of lake sediments: in Lakes Chemistry, Geology, Physics, A. Lerman, ed., Springer-Verlag, New York, 203–235.Google Scholar
  35. Keller, W. D. (1952) Analcime in the Popo Agie Member of the Chugwater Formation: J. Sediment. Petrol. 22, 70–82.CrossRefGoogle Scholar
  36. Kelts, K. and Hsü, K. J. (1978) Freshwater carbonate sedimentation: in Lakes Chemistry, Geology, Physics, A. Lerman, ed., Springer-Verlag, New York, 295–323.Google Scholar
  37. Mariner, R. H. and Surdam, R. C. (1970) Alkalinity and formation of zeolites in saline alkaline lakes: Science 170, 977–980.CrossRefGoogle Scholar
  38. Pipkin, B.W. (1967) Mineralogy of 140-foot core from Wilcox Playa, Cochise, Arizona: Amer. Assoc. Pet. Geol. Bull. 51, 478-79 (abstract).Google Scholar
  39. Pitman, J. K., Fouch, T. D., and Goldhaber, M. B. (1982) Depositional setting and diagenetic evolution of some Tertiary unconventional reservoir rocks, Uinta basin, Utah: Amer. Assoc. Pet. Geol. Bull. 66, 1581–1596.Google Scholar
  40. Pollastro, R. M. and Schenk, C. J. (1986) Characterizing and evaluating tar-sand reservoirs with scanning electron microscope–An example from Sunnyside, Utah: Amer. Assoc. Pet. Geol. Bull. 70, 633–634 (abstract).Google Scholar
  41. Ratterman, N. G. and Surdam, R. C. (1981) Zeolite mineral reactions in a tuff in the Laney Member of the Green River Formation, Wyoming: Clays & Clay Minerals 29, 365–377.CrossRefGoogle Scholar
  42. Remy, R. R. (1989a) Deltaic and lacustrine facies of the Green River Formation, southern Uinta basin, Utah: in Cretaceous Shelf Sandstones and Shelf Depositional Sequences, Western Interior Basin, Utah, Colorado and New Mexico–With an Auxiliary Trip to the Lacustrine Green River Formation, D. Nummedal and R. R. Remy, eds., American Geophysical Union, Washington, D. C, 28th Int. Geol. Cong. Guidebook T-119, 1–11 (in press).Google Scholar
  43. Remy, R. R. (1989b) Deltaic sedimentation and transgres-sive/regressive cycles in Green River Formation, southern Uinta basin, Utah: Amer. Assoc. Pet. Geol. Bull. 73, 404 (abstract).Google Scholar
  44. Remy, R. R. and Ferrell, R. E. (1987) Origin of analcime in marginal lacustrine mudstones of the Green River Formation, southern Uinta basin, Utah: Geol. Soc. Amer. Abstracts with Programs 19, 816 (abstract).Google Scholar
  45. Roehler, H. W. (1972) Zonal distribution of montmorillonite and zeolites in the Laney Shale Member of the Green River Formation in the Washakie basin, Wyoming: U.S. Geol. Surv. Prof. Pap. 800-B, B121–B124.Google Scholar
  46. Ryder, R. T., Fouch, T. D., and Elison, J. H. (1976) Early Tertiary sedimentation in the western Uinta basin: Geol. Soc. Amer. Bull. 87, 496–512.CrossRefGoogle Scholar
  47. Saha, P. (1959) Geochemical and X-ray investigations of natural and synthetic analcites: Amer. Mineral. 44, 300–313.Google Scholar
  48. Saha, P. (1961) The system NaAlSiO4 (nepheline)-NaAl-Si3Os (albite)-H2O: Amer. Mineral. 46, 859–884.Google Scholar
  49. Schultz, L. G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale: U.S. Geol. Surv. Prof Pap. 391-C, 31 pp.Google Scholar
  50. Sheppard, R. A. (1971) Zeolites in sedimentary deposits of the United States–A review: in Molecular Sieve Zeolites-1, R. F. Gould, ed., Amer. Chem. Soc. Advances in Chemistry Series 101, 279–310.CrossRefGoogle Scholar
  51. Sheppard, R. A. (1973) Zeolites in sedimentary rocks: U.S. Geol. Surv. Prof. Pap. 820, 689–695.Google Scholar
  52. Sheppard, R. A. and Gude, A. J., 3rd (1968) Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene Lake Tecopa, Inyo County, California: U.S. Geol. Surv. Prof. Pap. 597, 38 pp.Google Scholar
  53. Sheppard, R. A. and Gude, A. J., 3rd (1969) Diagenesis of tuffs in the Barstow Formation, Mud Hills, San Bernardino County, California: U.S. Geol. Surv. Prof. Pap. 634, 35 pp.Google Scholar
  54. Smith, J. W. and Milton, C. (1966) Dawsonite in the Green River Formation of Colorado: Econ. Geol. 61, 1029–1042.CrossRefGoogle Scholar
  55. Smoot, J. P. (1978) Origin of the carbonate sediments in the Wilkins Peak Member of the lacustrine Green River Formation (Eocene), Wyoming, U.S.A.: in Modern and Ancient Lake Sediments, A. Matter and M. E. Tucker, eds., Spec. Pub. Int. Ass. Sediment. 2, Blackwell, Oxford, 109–127.CrossRefGoogle Scholar
  56. Stanley, K. O. and Collinson, J. W. (1979) Depositional history of Paleocene-lower Eocene Flagstaff Limestone and coeval rocks, central Utah: Amer. Assoc. Pet. Geol. Bull. 63, 311–323.Google Scholar
  57. Surdam, R. C. (1977) Zeolites in closed hydrologic systems: in Mineralogy and Geology of Natural Zeolites, F. A. Mumpton, ed., Reviews in Mineralogy 4, Mineralogical Society of America, Washington, D.C., 65–79.CrossRefGoogle Scholar
  58. Surdam, R. C. and Eugster, H. P. (1976) Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya: Geol. Soc. Amer. Bull. 87, 1739–1752.CrossRefGoogle Scholar
  59. Surdam, R. C. and Parker, R. D. (1972) Authigenic aluminosilicate minerals in the tuffaceous rocks of the Green River Formation, Wyoming: Geol. Soc. Amer. Bull. 83, 689–700.CrossRefGoogle Scholar
  60. Surdam, R. C. and Sheppard, R. A. (1978) Zeolites in saline, alkaline-lake deposits: in Natural Zeolites: Occurrence, Properties, Use, L. B. Sand and F. A. Mumpton, eds., Peramon Press, Elmsford, New York, 145–174.Google Scholar
  61. Surdam, R. C. and Stanley, K. O. (1979) Lacustrine sedimentation during the culminating phase of Eocene Lake Gosiute, Wyoming (Green River Formation): Geol. Soc. Amer. Bull. 90, 93–110.CrossRefGoogle Scholar
  62. Tank, R. (1969) Clay mineral composition of the Tipton Shale Member of the Green River Formation (Eocene) of Wyoming: J. Sediment. Petrol. 39, 1593–1595.Google Scholar
  63. Van Houten, F. B. (1962) Cyclic sedimentation and the origin of analcime-rich Upper Triassic Lockatong Formation, west-central New Jersey and adjacent Pennsylvania: Amer. J. Sci. 260, 561–576.CrossRefGoogle Scholar
  64. Wu, D. C. (1970) Origin of mineral analcite in the upper Flowerpot Shale, northwestern Oklahoma: Trans. Kansas Academy Sci. 73, 247–251.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1989

Authors and Affiliations

  • Robert R. Remy
    • 1
  • Ray E. Ferrell
    • 1
  1. 1.Department of Geology and GeophysicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations