Clays and Clay Minerals

, Volume 37, Issue 5, pp 396–402 | Cite as

Preparation and Characterization of Al-Rich Zn-Al Hydrotalcite-Like Compounds

  • F. Thevenot
  • R. Szymanski
  • P. Chaumette


Hydrotalcite-like compounds, described by the formula [Zn1-xAlx(OH)2][(CO3)x/2 · nH2O], were prepared by coprecipitation methods at 80°C and characterized by bulk chemical analysis, X-ray powder diffraction (XRD), nuclear magnetic resonance (NMR), and scanning-transmission electron microscopy (STEM). An x value of 0.33 was previously assumed to be an upper limit, but recently, Al-rich hydrotalcite-like compounds have been prepared with x as large as 0.44 by hydrothermal synthesis. In the Zn-Al system, Al-rich hydrotalcite was synthesized at normal pressure by coprecipitation. Zn-Al hydrotalcite-like compounds were obtained in the range of x = 0.3 to 0.4. An Al-rich hydrotalcite-like compound with x = 0.44 was formed in mixtures containing large amounts of a poorly crystalline Zn-Al phase. A continuous contraction of the hydrotalcite-like structure occurred as x increased, both the a and c lattice parameters decreasing for x values as large as 0.44. This study illustrates the advantages of using quantitative analytical electron microscopy with high spatial resolution to complement conventional (and bulk) characterization techniques for correlating structural and compositional characteristics of finely divided materials.

Key Words

Hydrotalcite Nuclear magnetic resonance Scanning-transmission electron microscopy Synthesis X-ray powder diffraction Zinc 


Des composés de type hydrotalcite, de formule générale [Zn1-xAlx(OH)2][(CO3)x/2 · nH2O], ont été préparés par coprécipitation, à 80üC, et caractérisés par différentes techniques telles que: analyse chimique globale, diffraction des rayons-X (DRX), résonance magnétique nucléaire (RMN), et microscopie électronique à transmission (STEM). Jusqu’à présent, la valeur de 0.33 était la limite supérieure admise pour x, mais récemment des phases de type hydrotalcite riches en Al ont été préparées, pour x = 0.44, par synthèse hydrothermale. Pour le système Zn-Al, nos résultats montrent que des composés de type hydrotalcite riches en Al peuvent être synthéitsés à pression normale par coprécipitation. Des phases de type hydrotalcite à base de Zn et Al, ont été obtenues pour des valeurs de x comprises entre 0.3 et 0.4. Une phase hydrotalcite riche en Al avec x = 0.44 a été observée en mélange avec une grande quantité d’une phase à base de Zn et Al très mal cristallisée. Une contraction continue de la structure hydrotalcite est observée lorsque x augmente, les paramètres de maille a et c diminuent lorsque x augmente jusqu’à 0.44. Cette étude illustre les avantages de la microscopie électronique analytique à haute résolution spatiale, utilisée en complément des techniques de caractérisation conventionnelles, pour corréler les caractéristiques structurales et chimiques de matériaux finement divisés.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allmann, R. (1968) The crystal structure of pyroaurite: Acta Crystallogr. B24, 972–977.CrossRefGoogle Scholar
  2. Allmann, R. (1970) Doppelschichtstrukturen mit brucit-ähnlichen Schichtionen [MeIII-xMeIIIx(OH)2]x+: Chimia 24, 99–108.Google Scholar
  3. Allmann, R. and Jepsen, H. P. (1969) Die Struktur des Hydrotalkits: Neues Jahrb. Mineral. Monatsh. 12, 544–551.Google Scholar
  4. Allmann, R. and Lohse, H.-H. (1966) Die Kristallstruktur des Sjögrenits und eines Umwandlungsproduktes des Koenenits (= Chlor-Manasseits): Neues Jahrb. Mineral. Monatsh. 6, 161–180.Google Scholar
  5. Brindley, G. W. and Kikkawa, S. (1979) A crystal-chemical study of Mg, Al and Ni, Al hydroxy-perchlorates and hydroxy-carbonates: Amer. Mineral. 64, 836–843.Google Scholar
  6. Brown, G. (1980) Associated minerals: in Crystal Structures of Clay Minerals and their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 397–400.Google Scholar
  7. Gastuche, M. C., Brown, G., and Mortland, M. M. (1967) Mixed magnesium-aluminium hydroxides: Clay Miner. 7, 177–201.CrossRefGoogle Scholar
  8. Ingram, L. and Taylor, H. F. W. (1967) The crystal structures of sjörgrenite and pyroaurite: Mineral. Mag. 36, 465–479.Google Scholar
  9. Lynch, J., Raatz, F., and Dufresne, P. (1987) Characterization of the textural properties of dealuminated HY forms: Zeolites 7, 333–340.CrossRefGoogle Scholar
  10. Miyata, S. (1975) The syntheses of hydrotalcite-like compounds and their structures and physico-chemical proper-ties—I: The systems Mg2+-Al3+-NO3-, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl-, and Zn2+-Al3+-Cl-: Clays & Clay Minerals 23, 369–375.CrossRefGoogle Scholar
  11. Miyata, S., Kumura, T., and Shimada, M. (1975) Composite metal hydroxides: U.S. Patent 3,879,523, 72 pp.Google Scholar
  12. Pausch, I., Lohse, H.-H., Schürmann, K., and Allmann, R. (1986) Syntheses of disordered and Al-rich hydrotalcite-like compounds: Clays & Clay Minerals 34, 507–510.CrossRefGoogle Scholar
  13. Reichle, W. T., Kang, S. Y., and Everhardt, D. S. (1986) The nature of the thermal decomposition of a catalytically active anionic clay mineral: J. Catalysis 101, 352–359.CrossRefGoogle Scholar
  14. Schutz, A. and Biloen, P. (1987) Interlamellar chemistry of hydrotalcites. I. Polymerisation of silicate anions: J. Solid State Chem. 68, 360–368.CrossRefGoogle Scholar
  15. Serna, C. J., Rendon, J. L., and Iglesias, J. E. (1982) Crystal-chemical study of layered [Al2Li(OH)6]+X- ⊙ nH2O: Clays & Clay Minerals 30, 180–184.CrossRefGoogle Scholar
  16. Sissoko, I., Iyagba, E. T., Sahai, R., and Biloen, P. (1985) Anion intercalation and exchange in Al(OH)3-derived compounds: J. Solid State Chem. 60, 283–288.CrossRefGoogle Scholar
  17. Sugier, A. and Freund, E. (1978) Process for manufacturing alcohols, particularly linear saturated primary alcohols from synthesis gas: U.S. Patent 4,122,110, 8 pp.Google Scholar
  18. Sugier, A. and Freund, E. (1981) Process for manufacturing alcohols and more particularly saturated linear primary alcohols from synthesis gas: U.S. Patent 4,291,126, 8 pp.Google Scholar
  19. Szymanski, R. and Lynch, J. (1986) Quantitative X-ray microanalysis of divided solids in the STEM: in Proc. 11th Int. Conf. X-Ray Optics and Microanalysis, J. D. Brown and R. H. Packwood, eds., University of Western Ontario Graphic Services, London, Canada, 412–415.Google Scholar
  20. Szymanski, R., Travers, C., Chaumette, P., Courty, Ph., and Durand, D. (1987) Comparison of the quantitative studies by STEM of hydrated hydroxycarbonates and related mixed oxide catalysts for CO hydrogenation to alcohols: in Preparation of Catalysts IV, B. Delmon, P. Grange, P. A. Jacobs, and G. Poncelet, eds., Elsevier, Amsterdam, 739–751.Google Scholar
  21. Taylor, H. F. W. (1969) Segregation and cation-ordering in sjögrenite and pyroaurite: Mineral. Mag. 37, 338–342.CrossRefGoogle Scholar
  22. Taylor, H. F. W. (1973) Crystal structures of some double hydroxide minerals: Mineral. Mag. 39, 377–389.CrossRefGoogle Scholar
  23. Toulhoat, H., Plumail, J. C., Houpert, Ch., Szymanski, R., Bourseau, P., and Muratat, G. (1987) Modeling RDM catalysts deactivation by metal sulfides deposits: An original approach supported by HREM investigations and pilot tests results: in Symposium on Advances in Residue Upgrading, American Chemical Society, Denver, 1987, ACS Preprints 32, p. 463 (abstract).Google Scholar

Copyright information

© The Clay Minerals Society 1989

Authors and Affiliations

  • F. Thevenot
    • 1
  • R. Szymanski
    • 1
  • P. Chaumette
    • 1
  1. 1.Institut Français du PétroleRueil-Malmaison CedexFrance

Personalised recommendations