Clays and Clay Minerals

, Volume 35, Issue 2, pp 150–158 | Cite as

Alteration of Phlogopite to Corrensite at Sharbot Lake, Ontario

  • C. R. De Kimpe
  • N. Miles
  • H. Kodama
  • J. Dejou


A low-charge corrensite, i.e., a regular 1:1 interstratified smectite/chlorite was found in veins and fissures of an extensively fractured dolomite south of Perth, Ontario, Canada. Total chemical analysis indicated that the mineral was trioctahedral, having a structural formula corresponding to: (Ca0.17)(Mg7.36Al0.90Fe3+ 0.45Fe2+ 0.42)VI(Si6.06Al1.94)IVO20(OH)10. The coefficient of variation (CV) of the d(00l) spacings calculated for the mineral from X-ray powder diffraction data was 0.42, well below the maximum recommended value for corrensite, 0.75. The corrensite coexists with phlogopite, which is present as small (~0.5 mm) crystals throughout the rock and locally as large (~5 cm) crystals in pegmatitic veins. Microscopic observatiofls of large phlogopite crystals partially altered to corrensite suggest that corrensite formed at the expense of phlogopite by hydrothermal alteration.

Key Words

Corrensite Hydrothermal alteration Interstratification Phlogopite 


Une corrensite, minéral interstratifié régulier 1:1 smectite/chlorite, a été trouvée dans les veines et les fissures d’un affleurement dolomitique très fortement fragmenté au sud de Perth, Ontario, Canada. L’analyse chimique totale a montré que le minéral était trioctaédrique avec une formule structurale correspondant à: (Ca0.17)(Mg7.36Al0.90Fe3+ 0.45Fe2+ 0.42)VI(Si6.06Al1.94)IVO20(OH)10. Le coefficient de variation (CV) des espacements d(00l) calculé pour le minéral à partir des données de RX était de 0,42, soit bien en deça de la limite recommandée, 0,7 5. La corrensite coexiste avec la phlogopite qui est présente sous forme de petits cristaux (~0,5 mm) dans tout l’affleurement et aussi sous forme de grands cristaux (~5 cm) dans des veines de pegmatite. Un examen microscopique de plusieurs grands cristaux de phlogopite partiellement altérés en corrensite a suggéré que celle-ci est formée aux dépens de la phlogopite par altération hydrothermale.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alietti, A. (1957) Some interstratified clay minerals of the Taro Valley: Clay Min. Bull. 3, 207–211.CrossRefGoogle Scholar
  2. April, R. H. (1980) Regularly interstratified chlorite/vermiculite in contact metamorphosed red beds, Newark Group, Connecticut Valley: Clays & Clay Minerals 28, 1–11.CrossRefGoogle Scholar
  3. April, R. H. (1981) Trioctahedral smectite and interstratified chlorite/smectite in Jurassic strata of the Connecticut Valley: Clays & Clay Minerals 29, 31–39.CrossRefGoogle Scholar
  4. Bailey, S. W., Brindley, G. W., Kodama, H., and Martin, R. T. (1982) Report of The Clay Minerals Society Nomenclature Committee for 1980–1981: Clays & Clay Minerals 30, 76–78.CrossRefGoogle Scholar
  5. Bergaya, F., Brigatti, M. F., and Fripiat, J. J. (1985) Contribution of infrared spectroscopy to the study of corrensite: Clays & Clay Minerals 33, 458–462.CrossRefGoogle Scholar
  6. Bourne, J. H. (1974) The petrogenesis of the humite group minerals in regionally metamorphosed marbles of the Grenville supergroup: Ph.D. thesis, Queen’s University, Kingston, Ontario, 110 pp.Google Scholar
  7. Bradley, W. F. and Weaver, C. E. (1956) A regularly interstratified chlorite-vermiculite clay mineral: Amer. Mineral. 41, 497–504.Google Scholar
  8. Brigatti, M. F. and Poppi, L. (1984) Crystal chemistry of corrensite: A review: Clays & Clay Minerals 32, 391–399.CrossRefGoogle Scholar
  9. Brigatti, M. F. and Poppi, L. (1985) Interlayer water and swelling properties of natural and homoionic corrensite: Clays & Clay Minerals 33, 128–134.CrossRefGoogle Scholar
  10. Brown, G., Bourguignon, P., and Thorez, J. (1974) A lithium-bearing aluminian regular mixed layer montmorillonite-chlorite from Huy, Belgium: Clay Miner. 10, 135–144.CrossRefGoogle Scholar
  11. Deer, W. A., Howie, R. A., and Zussman, J. (1962) Rock Forming Minerals, Vol. 3. Sheet Silicates: Wiley, New York, 270 pp.Google Scholar
  12. Earley, J. W., Brindley, G. W., McVeagh, W. J., and Vanden Heuvel, R. C. (1956) A regularly interstratified montmorillonite-chlorite: Amer. Mineral. 41, 258–267.Google Scholar
  13. Farmer, V. C. (1974) The Infrared Spectra of Minerals: Mineralogical Society, London, 539 pp.CrossRefGoogle Scholar
  14. Foster, M. D. (1960) Interpretation of the composition of trioctahedral micas. U.S. Geol. Surv. Prof. Pap. 354-B, 11–49.Google Scholar
  15. Grim, R. E., Droste, J. B., and Bradley, W. F. (1960) A mixed-layer clay mineral association with an evaporate: in Clays and Clay Minerals, Proc. 8th Natl. Conf, Norman, Oklahoma, 1959, Ada Swineford, ed., Pergamon Press, New York, 228–236.Google Scholar
  16. Hewitt, D. F. (1956) The Grenville region of Ontario: Roy. Soc. Can. Spec. Publ. 1, 22–41.Google Scholar
  17. Johnson, L. J. (1964) Occurrence of regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil: Amer. Mineral. 49, 556–572.Google Scholar
  18. Jupe, D. F. and Jackson, B. (1964) Madoc area: Map 2053, Ontario Department of Mines, Toronto, Ontario.Google Scholar
  19. Kübler, B. (1973) La corrensite, indicateur possible de milieux de sédimentation et du degré de transformation d’un sédiment: Bull. Centre Rech. Pau-SNPA 7, 543–556.Google Scholar
  20. Lippmann, F. (1954) Uber einen Keuperton von Zaisersweiher bei Maulbronn: Heidelb. Beit. Mineral. Petrogr. 4, 130–134.Google Scholar
  21. Lippmann, F. (1956) Clay minerals from the Rot member of the Triassic near Göttingen, Germany: J. Sed. Petr. 26, 125–139.CrossRefGoogle Scholar
  22. MacEwan, D. M. C. (1961) Montmorillonite minerals: in The X-ray Identification and Crystal Structures of Clay Minerals, G. Brown, ed., Mineralogical Society, London, 143–207.Google Scholar
  23. Mackenzie, R. C. (1972) Differential Thermal Analysis: Academic Press, London, 775 pp.Google Scholar
  24. Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate: in Clays and Clay Minerals, Proc. 7th Natl. Conf, Washington, D.C., 1958, A. Swineford, ed., Pergamon Press, New York, 317–327.Google Scholar
  25. Miles, N. and De Kimpe, C. R. (1985) Application of glycerol/ethanol solutions for solvation of smectites dried on glass slides: Can. J. Soil Sci. 65, 229–232.CrossRefGoogle Scholar
  26. Millot, G. (1964) Géologie des Argiles: Masson, Paris, 510 pp.Google Scholar
  27. Nadeau, P., Wilson, M. J., McHardy, W. J., and Tait, J. M. (1984) Interstratified clays as fundamental particles: Science 225, 923–925.CrossRefGoogle Scholar
  28. Nishiyama, T., Shimoda, S., Shimosaka, K., and Kanaoka, S. (1975) Lithium-bearing tosudite: Clays & Clay Minerals 23, 337–342.CrossRefGoogle Scholar
  29. Proust, D. (1982) Supergene alteration of metamorphic chlorite in an amphibolite from Massif Central, France: Clay Miner. 17, 159–173.CrossRefGoogle Scholar
  30. Ross, G. J. and Kodama, H. (1976) Experimental alteration of a chlorite into a regularly interstratified chlorite-vermiculite by chemical oxidation: Clays & Clay Minerals 24, 183–190.CrossRefGoogle Scholar
  31. Shaw, D. M., Moxham, R. L., Filby, R. H., and Lapkowsky, W. W. (1963) The petrology and geochemistry of some Grenville skams. Part 1: Geology and petrography: Can. Mineral. 7, 420–442.Google Scholar
  32. Silver, L. T. and Lumbers, S. B. (1965) Geochronologic studies in the Bancroft-Madoc area of the Grenville Province, Ontario, Canada: Geol. Soc. Amer. Spec. Paper 87, 156 pp.Google Scholar
  33. Sudo, T. and Shimoda, S. (1978) Clays & Clay Minerals of Japan: Elsevier, Amsterdam, 326 pp.Google Scholar
  34. Van der Marel, H. W. and Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures: Elsevier, Amsterdam, 396 pp.Google Scholar
  35. Velde, B. (1985) Clay Minerals: A Physico-Chemical Explanation of Their Occurrence: Elsevier, Amsterdam, 427 pp.Google Scholar
  36. Veniale, F. and Van der Marel, H. W. (1970) Identification of some 1:1 regular interstratified trioctahedral clay minerals: in Proc. Int. Clay Conf, Tokyo, 1969, Vol. 1, L. Heller, ed., Israel Univ. Press, Jerusalem, 233–244.Google Scholar
  37. Wynne-Edwards, H. R. (1957) Structure of the Westport concordant pluton in the Grenville, Ontario: J. Geol. 65, 639–649.CrossRefGoogle Scholar
  38. Wynne-Edwards, H. R. (1967) Geology of Westport, Ontario: Map 1182 A. Geol. Surv. Canada, Ottawa, Ontario.Google Scholar

Copyright information

© The Clay Minerals Society 1987

Authors and Affiliations

  • C. R. De Kimpe
    • 1
  • N. Miles
    • 2
  • H. Kodama
    • 2
  • J. Dejou
    • 3
  1. 1.Agriculture Canada Research StationSainte-FoyCanada
  2. 2.Land Resource Research Center, Agriculture Canada, Central Experimental FarmOttawaCanada
  3. 3.INRA, Station d’AgronomieClermont-Ferrand CedexFrance

Personalised recommendations