Clays and Clay Minerals

, Volume 35, Issue 2, pp 121–128 | Cite as

Quinoline Sorption on Na-Montmorillonite: Contributions of the Protonated and Neutral Species

  • Calvin C. Ainsworth
  • John M. Zachara
  • Ron L. Schmidt


Dilute aqueous solutions of quinoline were contacted with Na-montmorillonite to elucidate the sorption process of the neutral and protonated species. Sorption occurs via a combination of ion exchange and molecular adsorption and yields S-type isotherms. Exchange between the quinolinium ion (QH+) and Na can be described by means of Vanselow selectivity coefficients and a thermodynamic exchange constant (Kex). Due to the apparent adsorption of the neutral species at high mole fractions (x) of the solid phase, the thermodynamic standard state was defined as 0.5 mole fraction. The selectivity at pH ~4.95 of the QH+ species over Na (at XQH+ = 0.5) was determined to be Kv = 340. At pH ≥ 5.5 surface mole fractions of 0.5 could not be obtained without adsorption of the neutral species. This study suggests that at dilute solution concentrations quinoline is sorbed preferentially as the cation even at pHs ≫ pKa. A critical surface-solution concentration is apparently necessary for adsorption of the neutral species.

Key Words

Adsorption Cation exchange Montmorillonite Quinoline Vanselow selectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Babcock, K. L. and Duckart, E. C. (1980) The standard state for exchangeable cations: Soil Sci. 130, 64–67.CrossRefGoogle Scholar
  2. Babcock, K. L. and Schulz, R. K. (1970) Isotopic and conventional determination of exchangeable sodium percentage of soil in relation to plant growth: Soil Sci. 109, 19–22.CrossRefGoogle Scholar
  3. Bailey, G. W., White, J. L., and Rothberg, T. (1968) Adsorption of organic herbicides by montmorillonite: Role of pH and chemical character of adsorbate: Soil Sci. Soc. Amer. Proc. 32, 222–234.CrossRefGoogle Scholar
  4. Bums, I. G., Hayes, M. H. G., and Stacey, M. (1973) Some physicochemical interactions of paraquat with soil organic materials and model compounds: Weed Res. 13, 79–90.CrossRefGoogle Scholar
  5. Chander, S., Fuerstenau, D. W., and Stigter, D. (1983) On hemimicelle formation at oxide/water interfaces: in Adsorption from Solution, R. H. Ottewill, C. H. Rochester, and A. L. Smith, eds., Academic Press, New York, 197–210.CrossRefGoogle Scholar
  6. Cowen, C. T. and White, D. (1958) The mechanisms of exchange reactions between sodium montmorillonite and various n-primary aliphatic amine salts: Trans. Faraday Soc. 54, 691–697.CrossRefGoogle Scholar
  7. Dixon, J. B., Moore, D. E., Agnihotri, N. P., and Lewis, D. E., Jr. (1970) Exchange of diquat2+ in soil clays, Vermiculite, and smectite: Soil Sci. Soc. Amer. Proc. 34, 805–808.CrossRefGoogle Scholar
  8. Doehler, R. W. and Young, W. A. (1961) Some conditions affecting the adsorption of quinoline by clay minerals in aqueous suspensions: in Clays and Clay Minerals, Proc. 9th Natl. Conf, West Lafayette, Indiana, 1960, Ada Swineford, ed., Pergamon Press, New York, 468–483.Google Scholar
  9. Duckart, E. C. and Babcock, K. L. (1984) Thermodynamics of cation exchange using Babcock’s standard state: Soil Sci. 138, 1–7.CrossRefGoogle Scholar
  10. Gilmour, J. T. and Coleman, N. T. (1971) s-Triazine adsorption studies: Ca-H-humic acid: Soil Sci. Soc. Amer. Proc. 35, 256–259.CrossRefGoogle Scholar
  11. Grim, R. E., Allaway, W. H., and Cuthbert, F. L. (1947) Reaction of different clay minerals with some organic cations: J. Amer. Chem. Soc. 30, 137–142.Google Scholar
  12. Hayes, M. H. B., Pick, M. E., and Toms, B. A. (1978) The influence of organocation structure on the adsorption of mono- and of bipridinium cations by expanding lattice clay minerals. I. Adsorption by Na+-montmorillonite: J. Colloid Interface Sci. 65, 254–265.CrossRefGoogle Scholar
  13. Helmy, A. K., De Bussetti, S. G., and Ferreiro, E. A. (1983) Adsorption of quinoline from aqueous solutions by some clays and oxides: Clays & Clay Minerals 31, 29–36.CrossRefGoogle Scholar
  14. Karickhoff, S. W. and Bailey, G. W. (1976) Protonation of organic bases in clay-water systems: Clays & Clay Minerals 24, 170–176.CrossRefGoogle Scholar
  15. Lailach, G. E., Thompson, T. D., and Brindley, G. W. (1968a) Absorption of pyrimidines, purines, and nucleosides by Li-, Na-, Mg-, and Ca-montmorillonite (clay-organic studies XII): Clays & Clay Minerals 16, 285–293.CrossRefGoogle Scholar
  16. Lailach, G. E., Thompson, T. D., and Brindley, G. W. (1968b) Absorption of pyrimidines, purines, and nucleosides by Co-, Ni-, Cu-, and Fe(III)-montmorillonite (clayorganic studies XIII): Clays & Clay Minerals 16, 295–301.CrossRefGoogle Scholar
  17. Moreale, A. and Van Bladel, R. (1976) Influence of soil properties on adsorption of pesticide-derived aniline and p-chloroaniline: J. Soil Sci. 27, 48–57.CrossRefGoogle Scholar
  18. Mortland, M. M. (1970) Clay-organic complexes and interactions: Adv. Agron. 22, 75–117.CrossRefGoogle Scholar
  19. Peigneur, R., Maes, A., and Cremers, A. (1975) Heterogeneity of charge distribution in montmorillonite as inferred from cobalt adsorption: Clays & Clay Minerals 23, 71–75.CrossRefGoogle Scholar
  20. Perrin, D. D., Dempsey, B., and Serjeant, E. P. (1981) pKa Predictionfor Organic Acids and Bases: Chapman and Hall, New York, 146 pp.CrossRefGoogle Scholar
  21. Philen, O. D., Jr., Weed, S. B., and Weber, J. B. (1970) Estimation of surface charge density of mica and Vermiculite by competitive adsorption of diquat2+ vs. paraquat2+: Soil Sci. Soc. Amer. Proc. 34, 527–531.CrossRefGoogle Scholar
  22. Sposito, G. (1981) The Thermodynamics of Soil Solutions: Oxford University Press, New York, 223 pp.Google Scholar
  23. Sposito, G. (1984) The Surface Chemistry of Soils: Oxford University Press, New York, 234 pp.Google Scholar
  24. Sposito, G., Holtzclaw, K. M., Johnston, C. T., and LeVesque-Madore, C. S. (1981) Thermodynamics of sodium-copper exchange on Wyoming bentonite at 298°K: Soil Sci. Soc. Amer. J. 45, 1079–1084.CrossRefGoogle Scholar
  25. Theng, B. K. G. (1974) The Chemistry of Clay-Organic Reactions: Wiley, New York, 221–319.Google Scholar
  26. Theng, B. K. G., Greenland, D. J., and Quirk, J. P. (1967) Adsorption of alkylammonium cations by montmorillonite: Clay Miner. 7, 1–17.CrossRefGoogle Scholar
  27. Thompson, T. D. and Brindley, G. W. (1969) Adsorption of pyrimidines, purines and nucleosides by Na-, Mg-, and Cu(II)-illite (clay-organic studies XVI): Amer. Miner. 54, 858–868.Google Scholar
  28. Vansant, E. F. and Uytterhoeven, J. B. (1972) Thermodynamics of exchange of n-alkylammonium ions on Namontmorillonite: Clays & Clay Minerals 20, 47–54.CrossRefGoogle Scholar
  29. White, D. and Cowen, C. T. (1960) Aromatic amine derivatives of montmorillonite: Brit. Ceram. Soc. 59, 16–21.Google Scholar
  30. Weed, S. B. and Weber, J. B. (1969) The effect of cation exchange capacity on the retention of diquat2+ and paraquat2+ by three-layer type clay minerals. I. Adsorption and release: Soil Sci. Soc. Amer. Proc. 33, 379–385.CrossRefGoogle Scholar
  31. Zachara, J. M., Ainsworth, C. C., Felice, L. J., and Resch, C. T. (1986) Quinoline sorption to subsurface materials: Role of pH and retention of the organic cation: Environ. Sci. Technol. 20, 620–627.CrossRefGoogle Scholar
  32. Zierath, D. L., Hassett, J. J., Banwart, W. L., Wood, S. G., and Means, J. C. (1980) Sorption of benzidine by sediments and soils: Soil Sci. 129, 277–281.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1987

Authors and Affiliations

  • Calvin C. Ainsworth
    • 1
  • John M. Zachara
    • 1
  • Ron L. Schmidt
    • 1
  1. 1.Battelle, Pacific Northwest LaboratoriesRichlandUSA

Personalised recommendations