Advertisement

Clays and Clay Minerals

, Volume 35, Issue 2, pp 89–110 | Cite as

Distribution and Chemistry of Diagenetic Minerals at Yucca Mountain, Nye County, Nevada

  • D. E. Broxton
  • D. L. Bish
  • R. G. Warren
Article

Abstract

Yucca Mountain is being studied as a potential site in southern Nevada for an underground, high-level nuclear waste repository. A major consideration for selecting this site is the presence of abundant zeolites in Miocene ash-flow tuffs underlying the region. Beneath Yucca Mountain four diagenetic mineral zones have been recognized that become progressively less hydrous with depth.

Zone I, the shallowest zone, is 375–584 m thick in the central part of Yucca Mountain, but 170 m thick to the north. Zone I contains vitric tuffs that consist of unaltered volcanic glass and minor smectite, opal, heulandite, and Ca-rich clinoptilolite. Zone II thins south to north from 700 to 480 m and is characterized by complete replacement of volcanic glass by clinoptilolite with and without mordenite, and by lesser amounts of opal, K-feldspar, quartz, and smectite. Zone III thins south to north from 400 to 98 m thick and consists of analcime, K-feldspar, quartz, and minor calcite and smectite. Heulandite occurs locally at the top of zone III in the eastern part of Yucca Mountain. Zone IV occurs in the deepest structural levels of the volcanic pile and is characterized by albite, K-feldspar, quartz, and minor calcite and smectite.

Clinoptilolite and heulandites in zone I have uniform Ca-rich compositions (60–90 mole % Ca) and Si:Al ratios that are mainly between 4.0 and 4.6. In contrast, clinoptilolites deeper in the volcanic sequence have highly variable compositions that vary vertically and laterally. Deeper clinoptilolites in the eastern part of Yucca Mountain are calcic-potassic and tend to become more calcium-rich with depth. Clinoptilolites at equivalent stratigraphic levels on the western side of Yucca Mountain have sodic-potassic compositions and tend to become more sodium-rich with depth. Despite their differences in exchangeable cation compositions these two deeper compositional suites have similar Si:Al ratios, generally between 4.4 and 5.0. Analcimes have nearly pure end-member compositions, typical of these minerals formed by diagenetic alteration of siliceous volcanic glass; however, K-feldspars are Si-rich compared to the ideal feldspar formula.

Bulk-rock contents of Si, Na, K, Ca, and Mg of zeolitic tuffs generally differ significantly from stratigraphically equivalent vitric tuffs, suggesting that zeolite diagenesis took place in an open chemical system. Both the whole rock and the clinoptilolite are relatively rich in Ca and Mg in the eastern part of Yucca Mountain and rich in Na in the western part. The Ca- and Mg-rich compositions of the zeolitized tuffs in the eastern part of Yucca Mountain may be due to cation exchange by the sorptive minerals with ground water partially derived from underlying Paleozoic carbonate aquifers.

Diagenetic zones become thinner and occur at stratigraphically higher levels from south to north across Yucca Mountain, probably due to a higher geothermal gradient in the northern part of the area. The diagenetic zones were established when the geothermal gradient was greater than it is today, probably during the thermal event associated with the development of the Timber Mountain-Oasis Valley caldera complex north of Yucca Mountain.

Key Words

Analcime Chemical composition Clinoptilolite Diagenesis Heulandite Mordenite Open system Zeolites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, L. L., Jr. (1960) The cation sieve properties of clinoptilolite: Amer. Mineral. 45, 689–700.Google Scholar
  2. Amey Carlos, B. (1985) Minerals in fractures of the unsaturated zone from drill core USW G-4, Yucca Mountain, Nye County, Nevada: Los Alamos Nat. Lab. Rept. LA-10415-MS, 55 pp.Google Scholar
  3. Barrows, K. J. (1980) Zeolitization of Miocene volcaniclastic rocks, southern Desatoya Mountains, Nevada: Geol. Soc. Amer. Bull. 91, 199–210.CrossRefGoogle Scholar
  4. Bence, A. E. and Albee, A. L. (1968) Empirical correction factors for electron microanalysis of silicates and oxides: J. Geol. 76, 382–403.CrossRefGoogle Scholar
  5. Benson, L. V., Robinson, J. H., Blankennagel, R. K., and Ogard, A. E. (1983) Chemical composition of groundwater and the locations of permeable zones in the Yucca Mountain area, Nevada: U.S. Geol. Surv. Open-File Rept. 83-854, 19 pp.Google Scholar
  6. Bish, D. L. (1986) Evaluation of past and future alterations in tuff at Yucca Mountain, Nevada, based on the clay mineralogy of drill cores USW G-1, G-2, and G-3: Los Alamos Nat. Lab. Rept. LA-10667-MS, 42 pp.Google Scholar
  7. Bish, D. L., Caporuscio, F. A., Copp, J. F., Crowe, B. M., Purson, J. D., Smyth, J. R., and Warren, R. G. (1981) Preliminary stratigraphic and petrologic characterization of core samples from USW G-l, Yucca Mountain, Nevada: Los Alamos Nat. Lab. Rept. LA-8840-MS, 66 pp.Google Scholar
  8. Bish, D. L. and Semarge, E. (1982) Mineralogie variations in a silicic tuff sequence: Evidence for diagenetic and hydrothermal reactions: Prog. Abstracts, 19th Annual Meeting, Clay Minerals Soc., Hilo, Hawaii, 42, (abstract).Google Scholar
  9. Bish, D. L. and Vaniman, D. T. (1985) Mineralogie summary of Yucca Mountain, Nevada: Los Alamos Nat. Lab. Rept. LA-10543-MS, 55 pp.Google Scholar
  10. Boles, J. R. (1971) Synthesis of analcime from natural heulandite and clinoptilolite: Amer. Mineral. 56, 1724–1734.Google Scholar
  11. Boles, J. R. (1972) Composition, optical properties, cell dimensions, and thermal stability of some heulandite group zeolites: Amer. Mineral. 57, 1463–1493.Google Scholar
  12. Boles, J. R. and Wise, W. S. (1978) Nature and origin of deep-sea clinoptilolite: in Natural Zeolites: Occurrence, Properties, Use, L. B. Sand and F. A. Mumpton, eds., Pergamon Press, Elmsford, New York, 235–243.Google Scholar
  13. Broxton, D. E., Vaniman, D. T., Caporuscio, F., Amey, B., and Heiken, G. (1982) Detailed petrographic and microprobe data for drill holes USW G-2 and UE25b-lH, Yucca Mountain, Nevada: Los Alamos Nat. Lab. Rept. LA-9324-MS, 168 pp.Google Scholar
  14. Broxton, D. E., Warren, R. G., Hagan, R. C., and Luedemann, G. (1986) Chemistry of diagenetically-altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada: Los Alamos Nat. Lab. Rept. LA-10802-MS, 160 pp.Google Scholar
  15. Byers, F. M., Jr., Carr, W. J., Orkild, P. P., Quinlivan, W. D., and Sargent, K. A. (1976) Volcanic suites and related cauldrons of Timber Mountain-Oasis Valley caldera complex, southern Nevada: U.S. Geol. Surv. Prof. Pap. 919, 70 pp.Google Scholar
  16. Caporuscio, F., Vaniman, D., Bish, D., Broxton, D., Amey, B., Heiken, G., Byers, F., Gooley, R., and Semarge, E. (1982) Petrologic studies of drill cores USW G-2 and UE25b-lH, Yucca Mountain, Nevada: Los Alamos Nat. Lab. Rept. LA-9255-MS, 111 pp.Google Scholar
  17. Carr, W. J. (1984) Regional structural setting of Yucca Mountain, southwestern Nevada, and late Cenozoic rates of tectonic activity in part of the southwestern Great Basin, Nevada and California: U.S. Geol. Surv. Open-File Rept. 84–354, 109 pp.Google Scholar
  18. Carr, W. J., Byers, F. M., Jr., and Orkild, P. P. (1984) Stratigraphic and volcano-tectonic relations of Crater Flat Tuff and some older volcanic units, Nye County, Nevada: U.S. Geol. Surv. Open-File Report 84114, 42 pp.Google Scholar
  19. Carr, M. D., Waddell, S. J., Vick, G. S., Stock, J. M., Monsen, S. A., Harris, A. G., Cork, B. S., and Byers, F. M., Jr. (1986) Geology of drill-hole UE25p#l: A test hole to pre-Tertiary rocks near the potential nuclear waste disposal site at Yucca Mountain, southern Nevada: U.S. Geol. Surv. Open-File Rept. 86175, 88 pp.Google Scholar
  20. Christiansen, R. L., Lipman, P. W., Carr, W. J., Byers, F. M., Jr., Orkild, P. P., and Sargent, K. A. (1977) Timber Mountain-Oasis Valley caldera complex of southern Nevada: Geol. Soc. Amer. Bull. 88, 943–959.CrossRefGoogle Scholar
  21. Christiansen, R. L., Lipman, P. W., Orkild, P. P., and Byers, F. M., Jr. (1965) Structure of the Timber Mountain caldera, southern Nevada, and its relation to basin-range structure, in U.S. Geol. Surv. Prof. Pap. 525B, B43–B48.Google Scholar
  22. Claassen, H. C. and White, A. F. (1979) Application of geochemical kinetic data to groundwater systems: A tuff- aceous-rock system in southern Nevada: Amer. Chem. Soc. Symp. Ser. 93, 771–793.Google Scholar
  23. Coombs, D. S. and Whetten, J. T. (1967) Composition of analcime from sedimentary and burial metamorphic rocks: Geol. Soc. Amer. Bull. 78, 269–282.CrossRefGoogle Scholar
  24. Criss, J. (1980) Fundamental parameters calculations on a laboratory microcomputer: Adv. X-Ray Analysis 23, 93–97.CrossRefGoogle Scholar
  25. Donahoe, R. J. and Dibble, W. E. (1982) Some observations on the mechanism of zeolite crystallization: Geol. Soc. Amer. Abs. with Prog. 14, p. 476.Google Scholar
  26. Hawkins, D. B., Sheppard, R. A., and Gude, A. J., 3rd (1978) Hydrothermal synthesis of clinoptilolite and comments on the assemblage phillipsite-clinoptilolite-mordenite: in Natural Zeolites: Occurrence, Properties, Use, L. B. Sand and F. A. Mumpton, eds., Pergamon Press, Elmsford, New York, 337–343.Google Scholar
  27. Hay, R. L. (1963) Stratigraphy and zeolite diagenesis of the John Day Formation of Oregon: Univ. Calif. Publ. Geol. Sci. 42, 199–262.Google Scholar
  28. Hay, R. L. (1966) Zeolites and zeolitic reactions in sedimentary rocks: Geol. Soc. Amer. Spec. Pap. 85, 130 pp.Google Scholar
  29. Heiken, G. H. and Bevier, M. L. (1979) Petrology of tuff units from the J-13 drill site, Jackass Flats, Nevada: Los Alamos Nat. Lab. Kept. LA-7563-MS, 55 pp.Google Scholar
  30. Höher, H. and Wirsching, U. (1978) Experiments on the formation of zeolites by hydrothermal alteration of volcanic glass: in Natural Zeolites: Occurrence, Properties, Use, L. B. Sand and F. A. Mumpton, eds., Pergamon Press, Elmsford, New York, 175–198.Google Scholar
  31. Hoover, D. L. (1968) Genesis of zeolites, Nevada Test Site: Geol. Soc. Amer. Mem. 100, 275–284.CrossRefGoogle Scholar
  32. Iijima, A. (1975) Effect of pore water to clinoptilolite-analcime-albite reaction series: J. Fac. Sci., Univ. Tokyo, Sec. II 19, 133–147.Google Scholar
  33. Iijima, A. (1978) Geologic occurrences of zeolites in marine environments: in Natural Zeolites: Occurrence, Properties, Use, L. B. Sand and F. A. Mumpton, eds., Pergamon Press, Elmsford, New York, 175–198.Google Scholar
  34. Iijima, A. (1980) Geology of natural zeolites and zeolitic rocks: in Proc. 5th Int. Conf. Zeolites, Naples, 1980, L. V. C. Rees, ed., Heyden, London, 103–118.Google Scholar
  35. Johnstone, J. K. and Wolfsberg, K., eds. (1980) Evaluation of tuff as a medium for a nuclear waste repository: Interim status report on the properties of tuff: Sandia Nat. Lab. Rept. SAND80-1464, 134 pp.Google Scholar
  36. Kästner, M. and Siever, R. (1979) Low temperature feldspars in sedimentary rocks: Amer. J. Sci. 279, 435–479.CrossRefGoogle Scholar
  37. Kerrisk, J. F. (1983) Reaction path calculations of groundwater chemistry and mineral formation at Rainier Mesa, Nevada: Los Alamos Nat. Lab. Rept. LA-9912-MS, 41 pp.Google Scholar
  38. Kirov, G. N., Pechigargov, V., and Landzheve, E. (1979) Experimental crystallization of volcanic glasses in a thermal gradient field: Chem. Geol. 26, 17–28.CrossRefGoogle Scholar
  39. Levy, S. S. (1984a) Petrology of samples from drill holes USW H-3, H-4, and H-5, Yucca Mountain, Nevada: Los Alamos Nat. Lab. Rept. LA-9706-MS, 77 pp.Google Scholar
  40. Levy, S. S. (1984b) Studies of altered vitrophyre for the prediction of nuclear waste repository-induced thermal alteration at Yucca Mountain, Nevada: in Scientific Basis for Nuclear Waste Management, Proc. 7th Material Research Soc. Symposia, G. L. McVay, ed., Elsevier, New York, 959–966.Google Scholar
  41. Lipman, P. W. (1965) Chemical comparison of glassy and crystalline volcanic rocks: U.S. Geol. Surv. Bull. 1201-D, 24 pp.Google Scholar
  42. Lipman, P. W., Christiansen, R. L., and O’Conner, J. T. (1966) A compositionally zoned ash-flow sheet in southern Nevada: U.S. Geol. Surv. Prof. Pap. 524-F, F1–F47.Google Scholar
  43. Maldonado, F. and Koether, S. L. (1983) Stratigraphy, structure and some petrographic features of Tertiary volcanic rocks at the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada: U.S. Geol. Surv. Open-File Rept. 83732, 83 pp.Google Scholar
  44. Mariner, R. H. and Surdam, R. C. (1970) Alkalinity and formation of zeolites in saline-alkaline lakes: Science 170, 977–980.CrossRefGoogle Scholar
  45. Marvin, R. F., Byers, F. M., Jr., Mehnert, H. H., Orkild, P. P., and Stem, T. W. (1970) Radiometric ages and stratigraphic sequence of volcanic and plutonic rocks, southern Nye and western Lincoln Counties, Nevada: Geol. Soc. Amer. Bull. 81, 2657–2676.CrossRefGoogle Scholar
  46. Mason, B. and Sand, L. B. (1960) Clinoptilolite from Patagonia—the relationship between clinoptilolite and heulandite: Amer. Mineral. 45, 341–350.Google Scholar
  47. Moiola, R. J. (1970) Authigenic zeolites and K-feldspars in the Esmeralda Formation, Nevada: Amer. Mineral. 55, 1681–1691.Google Scholar
  48. Moncure, G. K., Surdam, R. C., McKague, H. L. (1981) Zeolite diagenesis below Pahute Mesa, Nevada Test Site: Clays & Clay Minerals 29, 385–396.CrossRefGoogle Scholar
  49. Mumpton, F.A. (1960) Clinoptilolite redefined: Amer. Mineral. 45, 351–369.Google Scholar
  50. Nielson, C. H. and Sigurdsson, H. (1981) Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses: Amer. Mineral. 66, 547–552.Google Scholar
  51. Noble, D. C. (1967) Sodium, potassium, and ferrous iron contents of some secondarily hydrated natural silicic glasses: Amer. Mineral. 52, 280–286.Google Scholar
  52. Ogard, A. E. and Kerrisk, J. F. (1984) Groundwater chemistry along flow paths between a proposed repository site and the accessible environment: Los Alamos Nat. Lab. Rept. LA-10188-MS, 48 pp.Google Scholar
  53. Quinlivan, W. D. and Byers, F. M., Jr. (1977) Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley caldera complex, southern Nevada: U.S. Geol. Surv. Open-File Rept. 77724, 9 pp.Google Scholar
  54. Robinson, P. T. (1966) Zeolitic diagenesis of Mio-Pliocene rocks of the Silver Peak Range, Esmeralda County, Nevada: J. Sed. Pet. 36, 1007–1015.Google Scholar
  55. Sass, J., Lachenbruch, A., Grubb, F., and Moses, T. (1983) Status of thermal observations at Yucca Mountain, Nevada: U.S. Geol. Surv. Letter Rept. 10 pp.Google Scholar
  56. Scott, R. B. and Bonk, J. (1984) Preliminary map of Yucca Mountain, Nye County, Nevada, with geologic sections: U.S. Geol. Surv. Open-File Rept. 84494, scale 1:12000.Google Scholar
  57. Scott, R. B. and Spengler, R. W. (1982) Structural framework of a potential nuclear waste repository, Yucca Mountain, Nevada Test Site: Amer. Geophys. Union Trans. 63, p. 1099.Google Scholar
  58. Scott, R. and Castellanos, M. (1984) Preliminary report on the geologic character of drill holes USW GU-3 and USW G-3: U.S. Geol. Surv. Open-File Rept. 84491, 121 pp.Google Scholar
  59. Sheppard, R. A. and Gude, A. J., 3rd (1969) Diagenesis of tuffs in the Barstow Formation, Mud Hills, San Bernardino County, California: U.S. Geol. Surv. Prof. Pap. 634, 34 pp.Google Scholar
  60. Sheppard, R. A. and Gude, A. J., 3rd (1973) Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona: U.S. Geol. Surv. Prof. Pap. 830, 36 pp.Google Scholar
  61. Sheppard, R. A. and Gude, A. J., 3rd (1985) Diagenetic reaction of clinoptilolite to form mordenite in silicic vitric tuff from Yucca Mountain, Nye County, Nevada, U.S.A.: in Prog. andAbst., Zeolite’ 85, Int. Conf. Occurrence, Properties, Utilization of Natural Zeolites, Budapest, 1985, 17–18 (abstract).Google Scholar
  62. Smyth, J. R. and Caporuscio, F. A. (1981) Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime: Applications to radioactive waste isolation in silicic tuffs: Los Alamos Nat. Lab. Rept. LA-8841-MS, 30 pp.Google Scholar
  63. Spengler, R. W., Byers, F. M., Jr., and Warner, J. B. (1981) Stratigraphy and structure of volcanic rocks in drill hole USW-G1, Yucca Mountain, Nye County, Nevada: U.S. Geol. Surv. Open-File Rept. 811349, 50 pp.Google Scholar
  64. Spengler, R. W., Muller, D. C., and Livermore, R. B. (1979) Preliminary report on the geology and geophysics of drill hole UE25a-l, Yucca Mountain, Nevada: U.S. Geol. Sun. Open-File Rept. 791244, 43 pp.Google Scholar
  65. Sykes, M. L., Heiken, G. H., and Smyth, J. R. (1979) Mineralogy and petrology of tuff units from the UE25a-l drill site, Yucca Mountain, Nevada: Los Alamos Nat. Lab. Rept. LA-8139-MS, 76 pp.Google Scholar
  66. Vaniman, D., Bish, D., Broxton, D., Byers, F., Heiken, G., Carlos, B., Semarge, E., Caporuscio, F., and Gooley, R. (1984) Variations in authigenic mineralogy and sorptive zeolite abundance at Yucca Mountain, Nevada, based on studies of drill cores USW GU-3 and G-3: Los Alamos Nat. Lab. Rept. LA-9707-MA, 71 pp.Google Scholar
  67. Vaughan, D. E. W. (1978) Properties of natural zeolites: in Natural Zeolites: Occurrences, Properties, Use, L. B. Sand and F. A. Mumpton, eds., Pergamon Press, Elmsford, New York, 353–371.Google Scholar
  68. Walton, A. W. (1975) Zeolitic diagenesis in Oligocène volcanic sediments, Trans-Pecos, Texas: Geol. Soc. Amer. Bull. 86, 615–624.CrossRefGoogle Scholar
  69. White, A. F., Claassen, H. C, and Benson, L. V. (1980) The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainier Mesa, Nevada: U.S. Geol. Sun. Water-Supply Pap. 1535-Q, 34 pp.Google Scholar
  70. Winograd, I. J. and Thordarson, W. (1975) Hydrogeologie and hydrochemical framework, south-central Great Basin, Nevada-Califomia, with special reference to the Nevada Test Site: U.S. Geol. Sun. Prof. Pap. 712-C, 126 pp.Google Scholar
  71. Wirsching, U. (1976) Experiments on hydrothermal alteration processes of rhyolitic glass in closed and open systems: N. Jb. Miner. Mh. 5, 202–213.Google Scholar
  72. Zielinski, R. A. (1983) Evaluation of ash-flow tuffs as hosts for radioactive waste: Criteria based on selective leaching of manganese oxides: U.S. Geol. Sun. Open-File Rept. 83480, 21 pp.Google Scholar

Copyright information

© The Clay Minerals Society 1987

Authors and Affiliations

  • D. E. Broxton
    • 1
  • D. L. Bish
    • 1
  • R. G. Warren
    • 1
  1. 1.Earth and Space Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations