Advertisement

Clays and Clay Minerals

, Volume 35, Issue 2, pp 81–88 | Cite as

Pillaring Processes of Smectites with and Without Tetrahedral Substitution

  • D. Plee
  • L. Gatineau
  • J. J. Fripiat
Article

Abstract

Pillaring of montmorillonite and beidellite with aluminum polyhydroxypolymer takes place first by the saturation of the cation-exchange capacity by monomeric and/or dimeric aluminum hydroxide species and then the intercalation of the so-called Al13-polyhydroxypolymer. The clay slurry must have a solid concentration greater than 0.01% (w/w) to produce a basal spacing of about 18 Å. Sizeable clay tactoids must therefore exist in the slurry in order to produce a turbostratic structure ordered along the c axis. The main difference between pillared montmorillonite and pillared beidellite seems to be a more ordered distribution of pillars within the interlamellar space of the clays that are rich in tetrahedral substitutions. Recent 27Al and 21Si high-resolution nuclear magnetic resonance data suggest that this higher degree of ordering results from the reaction of the aluminic pillars and the clay sheet near the sites of the tetrahedral substitutions.

Key Words

Beidellite Hydroxy-aluminum complex Nuclear magnetic resonance Pillared interlayered complex Smectite Tetrahedral substitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelos, M., Tchoubar, D., Bottero, J. Y., and Fiessinger, F. (1985) Determination par DPAX de la structure fractale d’agregats obtenus par collage d’amas. Étude de deux solutions d’hydroxyde d’aluminium Al(OH)x avec x = 2.5: J. Physique 46, 1587–1593.CrossRefGoogle Scholar
  2. Bamhisel, R. I. (1977) Chlorites and hydroxy-interlayered vermiculite and smectite: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 331–356.Google Scholar
  3. Bottero, J. Y., Cases, J. M., Fiessinger, F., and Poirier, J. E. (1980) Studies of hydrolyzed aluminium chloride solutions. I. Nature of aluminium species and composition of aqueous solutions: J. Phys. Chem. 84, 2933–2939.CrossRefGoogle Scholar
  4. Bottero, J. Y., Partyka, S., and Fiessinger, F. (1982a) Differential calorimetry study of the polymer Al13O4(OH)28(H2O)87+ and of amorphous aluminum trihydroxide gel in aqueous solution: Thermochimica Acta 59, 221–229.CrossRefGoogle Scholar
  5. Bottero, J. Y., Tchoubar, D., Cases, J. M., and Fiessinger, F. (1982b) Investigation of the hydrolysis of aqueous solution of aluminum chloride. 2. Nature and structure by small- angle X-ray scattering: J. Phys. Chem. 86, 3667–3673.CrossRefGoogle Scholar
  6. Brindley, G. W. and Sempels, R. E. (1977) Preparation and properties of some hydroxy-aluminum beidellites: Clay Miner. 12, 229–237.CrossRefGoogle Scholar
  7. Chourabi, B. and Fripiat, J. J. (1981) Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites: Clays & Clay Minerals 29, 260–268.CrossRefGoogle Scholar
  8. Frank-Kamenetskiy, V. A., Kotov, N. V., and Tomzdhenko, A. N. (1973) The roles of AlIV (tetrahedral) and AlVI (octahedral) in layer silicates synthesis and alteration: Geokhimiya 8, 1153–1162.Google Scholar
  9. Fripiat, J., Chaussidon, J., and Jelli, A. (1971) Chimie-Physique des Phénomènes de Surface: Masson, Paris, 387 pp.Google Scholar
  10. Fripiat, J. J., Cases, J. M., François, M., and Letellier, M. (1982) Thermodynamic and microdynamic behavior of water in clay suspensions and gels: J. Colloid Interface Sci. 89, 378–400.CrossRefGoogle Scholar
  11. Gastuche, M. C. and Flerbillon, A. (1962) Étude des gels d’alumine: Cristallisation en milieu désionisé: Bull. Soc. Chim. France, 1404–1412.Google Scholar
  12. Jacobs, P., Poncelet, G., and Schutz, A. (1981) Procédé de préparation d’argiles pontées. Argiles préparées par ce procédé et applications des dites argiles: European Patent Request 0073718.Google Scholar
  13. Luth, W. C. and Ingamells, C. O. (1965) Gel preparation of starting materials for hydrothermal experimentation: Clays & Clay Minerals 25, 215–227.Google Scholar
  14. Pinnavaia, T. J. (1983) Intercalated clay catalysts: Science 220, 365–371.CrossRefGoogle Scholar
  15. Plee, D., Borg, F., Gatineau, L., and Fripiat, J. J. (1985) High resolution solid state 27Al and 29Si nuclear magnetic resonance study of pillared clays. J. Amer. Chem. Soc. 107, 2362–2369.CrossRefGoogle Scholar
  16. Raush, W. I. and Bale, H. D. (1964) Small-angle X-ray scattering from hydrolyzed aluminum nitrate solutions: J. Chem. Phys. 40, 3391–3397.CrossRefGoogle Scholar
  17. Vaughan, D. E. W. and Lussier, R. J. (1980) Preparation of molecular sieves based on pillared interlayered clays: in Proc. 5th International Conference on Zeolites, Naples, 1980, L. V. C. Rees, ed., Heyden, London, 94–101.Google Scholar

Copyright information

© The Clay Minerals Society 1987

Authors and Affiliations

  • D. Plee
    • 1
  • L. Gatineau
    • 1
  • J. J. Fripiat
    • 1
  1. 1.Centre de Recherche sur les Solides à Organisation Cristalline ImparfaiteOrléans Cédex 2France

Personalised recommendations