Advertisement

Clays and Clay Minerals

, Volume 35, Issue 1, pp 60–67 | Cite as

Fourier-Transform Infrared Study of Ethylene Glycol Monoethyl Ether Adsorbed on Montmorillonite: Implications for Surface Area Measurements of Clays

  • T. T. Nguyen
  • M. Raupach
  • L. J. Janik
Article

Abstract

Infrared spectra of 2-ethoxyethanol (ethylene glycol monoethyl ether, EGME) adsorbed on Camontmorillonite were obtained using diffuse-reflectance infrared-Fourier-transform (DRIFT) and attenuated total-reflectance (ATR) spectroscopy. The molecular conformation of adsorbed EGME shows predominantly a gauche configuration for the CH2-CH2 linkage as originally present in the liquid. The orientation of the adsorbed EGME molecule in the interlamellar region of the clay was deduced from measurements of the polarized ATR spectra. The planar zig-zag skeleton of the molecule appears to have its long axis tilted at an angle of 44° to the clay surface; the molecule is in van der Waals contact with both adjacent surfaces. Further, the plane of the skeleton of the molecule is tilted at an angle of 69° to the clay surface. This orientation leads to estimates of the d-value of the clay-EGME complex and of the surface area occupied by each molecule. These values are in excellent agreement with independent measurements of both parameters. The full surface coverage on montmorillonite is represented by a single layer of tilted EGME molecules shared by two adjacent clay sheets; each molecule occupies a total surface area consisting of one portion (25.4 Å2) on the lower surface of the interlayer plus another portion (14.8 Å2) on the upper surface. The implication of this model for materials such as kaolinite, where adsorption takes place on the external surface only, is that on these materials each EGME molecule occupies 20 Å2at full surface coverage.

Key Words

Adsorption Attenuated total reflectance spectroscopy Ethylene glycol monoethyl ether Infrared spectroscopy Molecular configuration Montmorillonite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bower, C. A. and Goertzen, J. O. (1959) Surface area of soils and clays by an equilibrium ethylene glycol method: Soil Sci. 87, 289–292.CrossRefGoogle Scholar
  2. Bradley, W. F., Weiss, E. J., and Rowland, R. A. (1963) A glycol-sodium vermiculite complex: in Clays and Clay Minerals, Proc. 10th Natl. Conf., Austin, Texas, 1961, Ada Swineford, ed., Pergamon Press, New York, 117–149.Google Scholar
  3. Carter, D. L., Heilman, M. D., and Gonzalez, C. L. (1965) Ethylene glycol monoethyl ether procedure for determining surface area of silicate materials: Soil Sci. 100, 356–360.CrossRefGoogle Scholar
  4. Cihacek, L. J. and Bremner, J. M. (1979) A simplified ethylene glycol monoethyl ether procedure for assessment of soil surface area: Soil Sci. Soc. Amer. J. 43, 821–822.CrossRefGoogle Scholar
  5. Dowdy, R. H. and Mortland, M. M. (1968) Alcohol-water interactions on montmorillonite surfaces. II. Ethylene glycol: Soil Sci. 105, 36–43.CrossRefGoogle Scholar
  6. Dyal, R. S. and Hendricks, S. B. (1950) Total surface of clay in polar liquid as a characteristic index: Soil Sci. 69, 421–432.CrossRefGoogle Scholar
  7. Eltantawy, I. M. and Arnold, P. W. (1973) Reappraisal of the ethylene glycol monoethyl ether (EGME) method for surface area estimations of clays: J. Soil Sci. 24, 232–238.CrossRefGoogle Scholar
  8. Eltantawy, I. M. and Arnold, P. W. (1974) Ethylene glycol sorption by homoionic montmorillonites: J. Soil Sci. 25, 99–110.CrossRefGoogle Scholar
  9. Fuller, M. P. and Griffiths, P. R. (1978) Infrared analysis by diffuse reflectance spectrometry: Amer. Lab. 10, 69–80.Google Scholar
  10. Heilman, M. D., Carter, D. L., and Gonzalez, C. L. (1965) The ethylene glycol monoethyl ether (EGME) technique for determining soil surface area: Soil Sci. 100, 409–413.CrossRefGoogle Scholar
  11. Iwamoto, R. (1971) Infrared study on molecular conformations of dialkoxyethanes and related compounds: Spectrochim. Acta 27A, 2385–2399.CrossRefGoogle Scholar
  12. Martin, R. T. (1955) Ethylene glycol retention by clays: Soil Sci. Soc. Amer. Proc. 19, 160–164.CrossRefGoogle Scholar
  13. Mikawa, Y. (1956) Characteristic absorption bands of vinyl ethers: Bull. Chem. Soc. Japan 29, 110–115.CrossRefGoogle Scholar
  14. Miyake, A. (1960) CH2-rocking frequencies of ethylene glycol and its derivatives in relation to the configuration of polyethylene glycol: J. Amer. Chem. Soc. 82, 3040–3043.CrossRefGoogle Scholar
  15. Pauling, L. (1960) The Nature of Chemical Bond: Cornell University Press, New York, 257–264.Google Scholar
  16. Raupach, M., Emerson, W. W., and Slade, P. G. (1979) The arrangement of paraquat bound by vermiculite and montmorillonite: J. Colloid Interface Sci. 69, 398–408.CrossRefGoogle Scholar
  17. Raupach, M. and Janik, L. (1976) The orientation of ornithine and 6-aminohexanoic acid adsorbed on vermiculite from polarized i.r. ATR spectra: Clays & Clay Minerals 24, 127–133.CrossRefGoogle Scholar
  18. Raupach, M., Slade, P. G., Janik, L., and Radoslovich, E. W. (1975) A polarized infrared and X-ray study of lysine-vermiculite: Clays & Clay Minerals 23, 181–186.CrossRefGoogle Scholar
  19. Reynolds, R. C. (1965) An X-ray study of an ethylene glycol-montmorillonite complex: Amer. Mineral. 50, 990–1001.Google Scholar
  20. Slade, P. G., Raupach, M., and Emerson, W. W. (1978) The ordering of cetylpyridinium bromide on vermiculite: Clays & Clay Minerals 26, 125–134.CrossRefGoogle Scholar
  21. Snyder, R. G. and Zerbi, G. (1967) Vibrational analysis of ten simple aliphatic ethers: Spectra, assignments, valence force field and molecular conformations: Spectrochim. Acta 23A, 391–437.Google Scholar
  22. Sor, K. and Kemper, W. D. (1959) Estimation of hydratable surface area of soils and clays from the amount of adsorption and retention of ethylene glycol: Soil Sci. Soc. Amer. Proc. 23, 105–110.CrossRefGoogle Scholar
  23. Srinivasan, T. K. K. Jose, C. I., and Biswas, A. B. (1969) Infrared spectra and rotational isomerism of mono-, di-, and tri-ethylene glycol monoalkyl ethers: Can. J. Chem. 47, 3877–3891.CrossRefGoogle Scholar
  24. Weast, R. C. (1980) Handbook of Chemistry and Physics: 60th ed. The Chemical Rubber Company, Boca Raton, Florida, C-297.Google Scholar
  25. Weiser, H., Laidlaw, W. G., Krueger, P. J., and Fuhrer, H. (1968) Vibrational spectra and a valence force field for conformers of diethyl ether and deuterated analogues: Spectrochim. Acta 24A, 1055–1089.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1987

Authors and Affiliations

  • T. T. Nguyen
    • 1
  • M. Raupach
    • 1
  • L. J. Janik
    • 1
  1. 1.CSIRO Division of SoilsGlen OsmondAustralia

Personalised recommendations