Clays and Clay Minerals

, Volume 35, Issue 1, pp 38–42 | Cite as

Further Consideration of the 29Si Nuclear Magnetic Resonance Spectrum of Kaolinite

  • J. G. Thompson
  • P. F. Barron


The introduction of artificial ±b/3 stacking faults into well-crystallized kaolinite by intercalating and removing hydrazine had no observable effect on the solid-state 29Si nuclear magnetic resonance spectrum of kaolinite. Also, the introduction of such stacking faults did not alter the hydroxyl-stretching region of the infrared spectrum, implying no change in the hydrogen bonding between the displaced layers. Calculations of Si...H distances and Si-O...H angles from reported structures for kaolinite indicated that the resolution of the two Si chemical environments was due to differences in hydrogen-bonding at the surface of the silicate sheet.

Key Words

Hydrazine Hydrogen bond Kaolinite Nuclear magnetic resonance Stacking fault 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. M. (1983) Hydrogen atom positions in kaolinite by neutron profile refinement: Clays & Clay Minerals 31, 352–356.CrossRefGoogle Scholar
  2. Alma, N. C. M., Hays, G. R., Samoson, A. V., and Lippmaa, E. T. (1984) Characterization of synthetic dioctahedral clays by solid-state silicon-29 and aluminum-27 nuclear magnetic spectrometry: Anal. Chem. 56, 729–733.CrossRefGoogle Scholar
  3. Barrios, J., Plançon, A., Cruz, M. I., and Tchoubar, C. (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite-relationship with infrared spectra: Clays & Clay Minerals 25, 422–429.CrossRefGoogle Scholar
  4. Barron, P. F., Frost, R. L., Skjemstad, J. O., and Koppi, A. J. (1983) Detection of two silicon environments in kaolins via solid state 29Si NMR: Nature 302, 49–50.CrossRefGoogle Scholar
  5. Brindley, G. W. and Robinson, K. (1946) The structure of kaolinite: Mineral. Mag. 27, 242–253.Google Scholar
  6. Fyfe, C. A., Gobbi, G. C, Murphy, W. J., Ozubko, R. S., and Slack, D. A. (1984) Investigation of the contributions to the 29Si MAS NMR line widths of zeolites and the detection of crystallographically inequivalent sites by the study of highly siliceous zeolites: J. Amer. Chem. Soc. 106, 4435–4438.CrossRefGoogle Scholar
  7. Grimmer, A.-R. and Radeglia, R. (1984) Correlation between the isotropic 29Si chemical shifts and the mean silicon-oxygen bond lengths in silicates: Chem. Phys. Lett. 106, 262–265.CrossRefGoogle Scholar
  8. Hinckley, D. N. (1963) Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina: in Clays and Clay Minerals, Proc. 11th Natl. Conf., Ottawa, Ontario, 1962, Ada Swineford, ed., Pergamon Press, New York, 229–235.Google Scholar
  9. Klinowski, J., Thomas, J. M., Fyfe, C. A., and Hartman, J. S. (1981) Applications of MAS NMR 29Si. Evidence of two different kinds of Si-Al ordering in zeolite studies: J. Phys. Chem. 85, 2590–2594.CrossRefGoogle Scholar
  10. Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. and Grimmer, A.-R. (1980) Structural studies of silicates by solid-state high resolution 29Si NMR: J. Amer. Chem. Soc. 102, 4889–4893.CrossRefGoogle Scholar
  11. Lipsicas, M., Raythatha, R. H., Pinnavaia, T. J., Johnson, I. D., Giese, R. F., Jr., Costanzo, P. M., and Robert, J.-L. (1984) Silicon and aluminum site distributions in 2:1 layered silicate clays: Nature 309, 604–607.CrossRefGoogle Scholar
  12. Magi, M., Lippmaa, E., Samoson, A., Engelhardt, G., and Grimmer, A.-R. (1984) Solid-state high-resolution silicon-29 chemical shifts in silicates: J. Phys. Chem. 88, 1518–1522.CrossRefGoogle Scholar
  13. Oldfield, E., Kinsey, R. A., Smith, K. A., Nichols, J. A., and Kirkpatrick, R. J. (1983) High-resolution NMR of inorganic solids. Influence of magnetic centers on magic-angle sample-spinning lineshapes in some natural aluminosilicates: J. Magn. Reson. 51, 325–329.Google Scholar
  14. Radeglia, R. and Engelhardt, G. (1985) Correlation of Si-O-T (T = Si or Al) angles and 29Si NMR chemical shifts in silicates and aluminosilicates. Interpretation by semi-empirical quantum-chemical considerations: Chem. Phys. Lett. 114, 28–30.CrossRefGoogle Scholar
  15. Sanz, J. and Serratosa, J. M. (1984) 29Si and 27Al high-resolution MAS-NMR spectra of phyllosilicates: J. Amer. Chem. Soc. 106, 4790–4793.CrossRefGoogle Scholar
  16. Smith, J. V. and Blackwell, C. S. (1983) Nuclear magnetic resonance of silica polymorphs: Nature 303, 223–225.CrossRefGoogle Scholar
  17. Smith, K. A., Kirkpatrick, R. J., Oldfield, E., and Henderson, D. M. (1983) High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates: Amer. Mineral. 68, 1206–1215.Google Scholar
  18. Suitch, P. R. and Young, R. A. (1983) Atom positions in highly ordered kaolinite: Clays & Clay Minerals 31, 357–366.CrossRefGoogle Scholar
  19. Thompson, J. G. (1984a) Two possible interpretations of 29Si nuclear magnetic resonance spectra of kaolin-group minerals: Clays & Clay Minerals 32, 233–234.CrossRefGoogle Scholar
  20. Thompson, J. G. (1984b) 29Si and 27Al nuclear magnetic resonance spectroscopy of 2:1 clay minerals: Clay Miner. 19, 229–236.CrossRefGoogle Scholar
  21. Thompson, J. G. (1985) Interpretation of solid-state 13C and 29Si nuclear magnetic resonance spectra of kaolinite intercalates: Clays & Clay Minerals 33, 173–180.CrossRefGoogle Scholar
  22. Thompson, J. G. and Withers, R. L. (1987) A transmission electron microscopy contribution to the structure of kaolinite: Clays & Clay Minerals (in press).Google Scholar
  23. Watanabe, T., Shimizu, H., Masuda, A., and Saito, H. (1983) Studies of 29Si spin-lattice relaxation times and paramagnetic impurities in clay minerals by magic-angle spinning 29Si-NMR and EPR: Chem. Lett. 8, 1293–1296.CrossRefGoogle Scholar
  24. Zvyagin, B. B. (1960) Electron diffraction determination of the structure of kaolinite: Sov. Phys. Crystallogr. 5, 32–42.Google Scholar

Copyright information

© The Clay Minerals Society 1987

Authors and Affiliations

  • J. G. Thompson
    • 1
    • 2
  • P. F. Barron
    • 1
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia
  2. 2.Brisbane NMR Centre, School of ScienceGriffith UniversityNathanAustralia

Personalised recommendations