Clays and Clay Minerals

, Volume 34, Issue 3, pp 346–352 | Cite as

Expandable Phyllosilicate Reactions with Lithium on Heating

  • C. H. Lim
  • M. L. Jackson


A method using Li saturation and heating to 250°C to differentiate montmorillonite from beidellite and nontronite has been developed. The test utilizes three washings with 3 M LiCl and two washings with 0.01 M LiCl in 90% methanol to prevent dispersion. An ’infinitely thick’ sample (6–8 mg/cm2) on a glass slide is used to avoid the effects of the reaction of a thin clay film with sodium of the slide when it is heated at 250°C. Solvation with glycerol rather than ethylene glycol is used, because all of the Li smectites studied expanded to some extent in ethylene glycol after the heating. The smectites included several montmorillonites, a nontronite, and saponites. The presence of interstratified montmorillonite and beidellite layers was clearly shown by the test for several smectite samples, including the so-called beidellites from Beidell, Colorado, and Chen-yuan, Taiwan, and several soil clays. The test thereby provides more mineralogical information than the often-used arbitrary dividing point between montmorillonite and beidellite at 50% tetrahedral charge. Heating the Li-saturated clays at 250°C caused substitution of 35 to 125 meq/100 g of nonexchangeable Li. These amounts exceeded the changes in cation-exchange capacity plus Li by 4 to 21 meq/100 g, except for the end-member beidellite from the Black Jack mine, Idaho. Fusion with LiNO3 at 300°C could not be used to differentiate between smectites instead of washing with LiCl solution and heating to 250°C, because fused montmorillonite subsequently expanded to 18 Å with glycerol. Large increases in nonexchangeable Li were caused by the fusion of smectites, a vermiculite, and two partially expanded micas.

Key Words

Beidellite Lithium saturation Montmorillonite Nontronite Soil clay X-ray powder diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Kader, F. H., Jackson, M. L., and Lee, G. B. (1978) Soil kaolinite, vermiculite, and chlorite identification by an improved lithium DMSO X-ray diffraction test: Soil Sci. Soc. Amer. J. 42, 163–167.CrossRefGoogle Scholar
  2. Alexiades, C. A. and Jackson, M. L. (1965) Quantitative determination of vermiculite in soils: Soil Sci. Soc. Amer. Proc. 29, 522–527.CrossRefGoogle Scholar
  3. Anderson, D. M. and Reynolds, R. C. (1966) Umiat bentonite: an unusual montmorillonite from Umiat, Alaska: Amer. Mineral. 51, 1443–1456.Google Scholar
  4. Bailey, S. W. (1980) Summary of recommendations of AIPEA nomenclature committee on clay minerals: Amer. Mineral. 65, 1–7.Google Scholar
  5. Barshad, I. (1954) Cation exchange in micaceous minerals: II. Replaceability of ammonium and potassium from vermiculite, biotite, and montmorillonite: Soil Sci. 78, 57–76.CrossRefGoogle Scholar
  6. Brindley, G. W. and Ertem, G. (1971) Preparation and solvation properties of some variable charge montmorillonites: Clays & Clay Minerals 19, 399–404.CrossRefGoogle Scholar
  7. Brown, G., ed. (1961) The X-ray Identification and Crystal Structures of Clay Minerals: Mineralogical Society, London, 544 pp.Google Scholar
  8. Bystrom-Brusewitz, A. M. (1976) Studies on the Li test to distinguish between beidellite and montmorillonite: in Proc. Int. Clay Conf., Mexico City, 1975, S. W. Bailey, ed., Applied Publishing, Wilmette, Illinois, 419–428.Google Scholar
  9. Calvet, R. and Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays: Clays & Clay Minerals 19, 175–186.CrossRefGoogle Scholar
  10. Chen, P. Y., Wan, H. M., and Brindley, G. W. (1976) Beidellite clay from Chang-yuan, Taiwan; geology and mineralogy: Clay Miner. 11, 221–233.CrossRefGoogle Scholar
  11. Douglas, L. A. (1982) Smectites in acidic soils: in Proc. Int. Clay Conf., Bologna, Pavia, 1981, H. van Olphen and F. Veniale, eds., Elsevier, Amsterdam, 635–640.Google Scholar
  12. Ertem, G. (1972) Irreversible collapse of montmorillonite: Clays & Clay Minerals 20, 199–205.CrossRefGoogle Scholar
  13. Farmer, V. C. and Russell, J. D. (1967) Infrared absorption spectrometry in clay studies: Clays & Clay Minerals 15, 121–142.CrossRefGoogle Scholar
  14. Glaeser, R., Mantin, I., and Mering, J. (1967) Observations sur la beidellite: Bull. Groupe Franc. Argiles 19, 125–130.CrossRefGoogle Scholar
  15. Gonzalez Garcia, F. (1950) Contribution al estudio de las propiedades de los silicatos del groupo de la montmorillonita: An. Edafol. Fisiol. Veg. 9, 149–185.Google Scholar
  16. Greene-Kelly, R. (1952) A test for montmorillonite: Nature 170, 1130–1131.CrossRefGoogle Scholar
  17. Greene-Kelly, R. (1953) The identification of montmorillonoids in clays: J. Soil Sci. 4, 233–237.CrossRefGoogle Scholar
  18. Greene-Kelly, R. (1955) Dehydration of the montmorillonite minerals: Mineral. Mag. 30, 604–615.Google Scholar
  19. Hamilton, J. D. (1971) Beidellitic montmorillonite from Swansea, New South Wales: Clay Miner. 9, 107–123.CrossRefGoogle Scholar
  20. Heller-Kallai, L. (1976) Interaction of montmorillonite with alkali halides: in Proc. Int. Clay Conf, Mexico City, 1975, S. W. Bailey, ed., Applied Publishing, Wilmette, Illinois, 361–372.Google Scholar
  21. Heller-Kallai, L. and Rozenson, I. (1980) Dehydroxylation of dioctahedral phyllosilicates: Clays & Clay Minerals 28, 355–368.CrossRefGoogle Scholar
  22. Hofmann, U. and Kiemen, R. (1950) Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung: Z. Anorg. Chem. 262, 95–99.CrossRefGoogle Scholar
  23. Jackson, M. L. (1979) Soil Chemical Analysis—Advanced Course: 2nd ed., 11th printing, published by author, Madison, Wisconsin, 895 pp.Google Scholar
  24. Jackson, M. L. and Sridhar, K. (1974) Scanning electron microscopic and X-ray diffraction study of natural weathering of phlogopite through vermiculite to saponite: Soil Sci. Soc. Amer. Proc. 38, 843–847.CrossRefGoogle Scholar
  25. Johns, W. D. and Tettenhorst, R. T. (1959) Differences in the montmorillonite solvating ability of polar liquids: Amer. Mineral. 44, 894–896.Google Scholar
  26. Lagaly, G. and Weiss, A. (1976) The layer charge of smectitic layer silicates: in Proc. Int. Clay Conf, Mexico City, 1975, S. W. Bailey, ed., Applied Publishing, Wilmette, Illinois, 157–172.Google Scholar
  27. Larsen, E. S. and Wherry, E. T. (1925) Beidellite, a new mineral name: J. Wash. Acad. Sci. 15, 465–466.Google Scholar
  28. Lim, C. H. and Jackson, M. L. (1984) Mineralogy of soils developed in periglacial deposits of southwestern Canada: Soil Sci. Soc. Amer. J. 48, 684–692.CrossRefGoogle Scholar
  29. Marshall, C. E., Humbert, R. P., Shaw, B. T., and Caldwell, O. G. (1942) Studies of clay particles with the electron microscope: II. The fractionation of beidellite, nontronite, magnesium bentonite, and attapulgite: Soil Sci. 54, 149–158.CrossRefGoogle Scholar
  30. Ross, G. J. and Mortland, M. M. (1966) A soil beidellite: Soil. Sci. Soc. Amer. Proc. 30, 337–343.CrossRefGoogle Scholar
  31. Tettenhorst, R. T. (1962) Cation migration in montmorillonites: Amer. Mineral. 47, 769–773.Google Scholar
  32. Tettenhorst, R. T. and Johns, W. D. (1966) Interstratification in montmorillonite: in Clays and Clay Minerals, Proc. 13th Natl. Conf, Madison, Wisconsin, 1964, W. F. Bradley and S. W. Bailey, eds., Pergamon Press, New York, 85–93.Google Scholar
  33. Weaver, C. E. (1958) The effects of geologic significance of potasium ‘fixation’ by expandable clay minerals derived from muscovite, biotite, chlorite, and volcanic material: Amer. Mineral. 43, 839–861.Google Scholar
  34. Weaver, R. M., Jackson, M. L., and Syers, J. K. (1976) Clay mineral stability as related to activities of aluminum, silicon, and magnesium in matrix solution of montmorillonitecontaining soils: Clays and Clay Minerals 24, 246–252.CrossRefGoogle Scholar
  35. Weir, A. H. and Greene-Kelly, R. (1962) Beidellite: Amer. Mineral. 47, 137–146.Google Scholar
  36. White, J. L. (1956) Reactions of molten salts with layerlattice silicates: in Clays and Clay Minerals, Proc. 4th Natl. Conf., University Park, Pennsylvania, 1955, Ada Swineford, ed., Natl. Acad. Sci. Natl. Res. Counc. Publ. 456, Washington, D.C., 133–146.Google Scholar
  37. Wildman, W. E., Jackson, M. L., and Whittig, L. D. (1968) Iron-rich montmorillonite formation in soils derived from serpentinite: Soil Sci. Soc. Amer. Proc. 32, 787–794.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1986

Authors and Affiliations

  • C. H. Lim
    • 1
  • M. L. Jackson
    • 1
  1. 1.Department of Soil ScienceUniversity of WisconsinMadisonUSA

Personalised recommendations