Clays and Clay Minerals

, Volume 34, Issue 3, pp 314–322 | Cite as

Mössbauer Spectroscopic Study of the Iron Mineralogy of Post-Glacial Marine Clays

  • J. Kenneth Torrance
  • Sheila W. Hedges
  • Lawrence H. Bowen


Three post-glacial marine clays from eastern Canada and one marine clay from Japan have been studied by Mössbauer spectroscopy to ascertain their iron mineralogy. Small amounts of hematite (in two samples) and magnetite (in one sample) were found in the Canadian clays, and hematite was detected in the Japanese clay. The major spectral components were ferrous and ferric doublets, consistent with X-ray powder diffraction results that show chlorite, mica, and amphibole in the Canadian samples and smectite in the Japanese sample. Citrate-dithionite extraction removed hematite and most of the magnetite from these samples. Acid-base extraction also removed chlorite and some mica from the Canadian samples. Samples treated by these extractions had appreciably lower geotechnical yield stresses at given water contents.

Key Words

Hematite Iron Magnetite Mössbauer spectroscopy Quick clay Smectite Yield strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amarasiriwardena, D. D., DeGrave, E., Bowen, L. H., and Weed, S. B. (1986) Quantitative determination of aluminum-substituted goethite-hematite mixtures by Mössbauer spectroscopy: Clays & Clay Minerals (in press).Google Scholar
  2. Bahgat, A. A. and Fayek, M. K. (1982) Absolute evaluation of ferrous and ferric concentration in Ca amphibole: Phys. Status Solidia 71, 575–581.CrossRefGoogle Scholar
  3. Bancroft, G. M. (1973) Mössbauer Spectroscopy. An Introduction for Inorganic Chemists and Geochemists: John Wiley, New York, 252 pp.Google Scholar
  4. Bjerrum, L., Loken, T., Heiberg, S., and Foster, R. (1969) A field study of factors responsible for quick clay slides: in Proc. 7th Int. Conf. Soil Mech. Found. Eng., Mexico, Vol. 2, 531–540.Google Scholar
  5. Blaauw, C., Stroink, G., and Leiper, W. (1980) Mössbauer analysis of tale and chlorite: J. Phys. (Paris) 41, 411–412.CrossRefGoogle Scholar
  6. Coey, J. M. D. (1975) Iron in a post-glacial lake sediment core: a Mössbauer effect study: Geochim. Cosmochim. Acta 39, 401–415.CrossRefGoogle Scholar
  7. Coey, J. M. D. (1980) Clay minerals and their transformations studied with nuclear techniques: the contribution of Mössbauer spectroscopy: At. Energy Rev. 18, 1–124.Google Scholar
  8. DeGrave, E., Bowen, L. H., and Weed, S. B. (1982) Mössbauer study of aluminum-substituted hematites: J. Mag. Mag. Mat. 27, 98–108.CrossRefGoogle Scholar
  9. DeGrave, E., Chambaere, D., and Bowen, L. H. (1983) Nature of the Morin transition in Al-substituted hematite: J. Mag. Mag. Mat. 30, 349–354.CrossRefGoogle Scholar
  10. Dollase, W. A. (1973) Mössbauer spectra and iron distribution in the epidote-group minerals: Z. Kristallogr. 138, 41–63.CrossRefGoogle Scholar
  11. Eden, W. J., Fletcher, E. B., and Mitchell, R. J. (1971) South Nation River landslide, 16 May 1971: Can. Geotech. J. 18, 446–451.CrossRefGoogle Scholar
  12. Egashira, K. and Ohtsubo, M. (1983) Swelling and mineralogy of smectites in paddy soils derived from marine alluvium, Japan: Geoderma 29, 119–127.CrossRefGoogle Scholar
  13. Hendershot, W. H. and Carson, M. A. (1978) Changes in plasticity of a sample of Champlain clay after selective dis solution to remove amorphous material: Can. Geotech. J. 15, 609–616.CrossRefGoogle Scholar
  14. Johnston, J. H. and Glasby, G. P. (1982) A Mössbauer spectroscopic and X-ray diffraction study of the iron mineralogy of some sediments from the southwestern Pacific basin: Marine Chem. 11, 437–448.CrossRefGoogle Scholar
  15. Kodama, H., Longworth, G., and Townsend, M. G. (1982) A Mössbauer investigation of some chlorites and their oxidation products: Can. Mineral. 20, 585–592.Google Scholar
  16. Manning, P. G., Lum, K. R., and Birchall, T. (1983) Forms of iron phosphorus and trace-metal ions in a layered sediment core from Lake Ontario: Can. Mineral. 21, 121–128.Google Scholar
  17. Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered by sodium bicarbonate: in Clays and Clay Minerals, Proc. 7th Natl. Conf., Washington, D.C., 1958, Ada Swineford, ed., Pergamon Press, New York, 317–327.Google Scholar
  18. Melchior, D. C., Wildeman, T. R., and Williamson, D. C. (1982) Mössbauer investigation of the transformations of the iron minerals in oil shale during retorting: Fuel 61, 516–522.CrossRefGoogle Scholar
  19. Murad, E. and Schwertmann, U. (1980) The Mössbauer spectrum of ferrihydrite and its relation to those of other iron oxides: Amer. Mineral. 65, 1044–1049.Google Scholar
  20. Nininger, R. C., Jr. and Schroeer, D. (1978) Mössbauer studies of the Morin transition in bulk and microcrystalline α-Fe2O3: J. Phys. Chem. Sol. 39, 137–144.CrossRefGoogle Scholar
  21. Norsk Geoteknisk Forening (1974) Retningslinjer for presentasjon av geotekniske undersokelser: Norsk Geoteknisk Forening, Oslo, 16 pp.Google Scholar
  22. Ohtsubo, M., Takayama, M., and Egashira, K. (1982) Marine quick clays from Ariake Bay, Japan: Soils and Foundations 22, 71–80.CrossRefGoogle Scholar
  23. Papamarinopoulos, S., Readman, P. W., Maniatis, Y., and Simopoulos, A. (1982) Magnetic characterization and Mössbauer spectroscopy of magnetic concentrates from Greek lake sediments: Earth Planetary Sci. Lett. 57, 173–181.CrossRefGoogle Scholar
  24. Penner, E. (1965) A study of sensitivity in Leda clay: Can. J. Earth Sci. 2, 425–441.CrossRefGoogle Scholar
  25. Quigley, R. M. (1980) Geology, mineralogy and geochemistry of Canadian soft soils: a geotechnical perspective: Can. Geotech. J. 17, 417–428.CrossRefGoogle Scholar
  26. Rosenqvist, I. Th. (1953) Considerations on the sensitivity of Norwegian quick clays: Geotechnique 3, 195–200.CrossRefGoogle Scholar
  27. Suttill, R. J., Turner, P., and Vaughan, D. J. (1982) The geochemistry of iron in recent tidal-flat sediments of the Wash area, England: a mineralogical, Mössbauer and magnetic study: Geochim. Cosmochim. Acta 46, 205–217.CrossRefGoogle Scholar
  28. Tavenas, F., Chagnon, J.-Y., and LaRochelle, P. (1971) The Saint-Jean-Vianney landslide: observations and eyewitness accounts: Can. Geotech. J. 18, 463–478.CrossRefGoogle Scholar
  29. Torrance, J. K. (1975) On the role of chemistry in the development and behaviour of the sensitive marine clays of Canada and Scandinavia: Can. Geotech. J. 3, 326–335.CrossRefGoogle Scholar
  30. Torrance, J. K. (1976) Leaching, weathering and origin of Leda clay in the Ottawa area: in Mass Wasting, 4th Guelph Symp. on Geomorphology, 1975, E. Yatsu, A. J. Ward, and F. Adams, eds., Geo Abstracts, Ltd., Norwich, U.K., 105–116.Google Scholar
  31. Torrance, J. K. (1984) A comparison of marine clays from Ariake Bay, Japan and the South Nation River landslide site, Canada: Soils and Foundations 24, 75–81.CrossRefGoogle Scholar
  32. Wivel, C. and Morup, S. (1981) Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectroscopy: J. Phys. E. 14, 605–610.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1986

Authors and Affiliations

  • J. Kenneth Torrance
    • 1
  • Sheila W. Hedges
    • 2
  • Lawrence H. Bowen
    • 2
  1. 1.Department of GeographyCarleton UniversityOttawaCanada
  2. 2.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations