Advertisement

Clays and Clay Minerals

, Volume 34, Issue 3, pp 287–294 | Cite as

Reactions of the Conjugated Dienes Butadiene and Isoprene Alone and with Methanol Over Ion-Exchanged Montmorillonites

  • J. M. Adams
  • T. V. Clapp
Article

Abstract

The reactions of simple conjugated dienes over divalent and trivalent transition metal-exchanged montmorillonites yield, in the absence of nucleophiles, a variety of products. Some of these products are a result of Diels-Alder cycloaddition reactions, whereas others are indicative of carbocation intermediates, i.e., other dimers, oligomers, and isomerization products of these intermediates. The reactions in sealed cells between 20° and 150°C show trends in the yields of the various product groups. Dimers of butadiene and isoprene formed by cycloaddition (i.e., 4-vinylcyclohexene and the monoterpene p-menthadiene (limonene)) were formed at low temperatures (20–50°C). As the temperature was raised, the total yield of dimers increased and higher oligomers were formed along with isomerization products of the dimers and oligomers. The products of cycloaddition, however, did not increase markedly. The type of solvent used for the reaction was found to influence the reactivity, e.g., the use of 1,4-dioxan rather than chloroform led to a reduction in total conversion and also to a markedly higher degree of selectivity. In the presence of a suitable nucleophile (methanol), both dienes gave the 1,4-addition product predominantly, which suggests that an allylic carbocation intermediate was involved. The use of an interlayer-supported nickel complex, [HNi(P(OEt)3)4]+, produced the only large scale polymerization observed in this work.

Key Words

Butadiene Catalysis Diels-Alder reaction Gas-liquid chromatography Isoprene Methanol Montmorillonite Transition metal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. M., Ballantine, J. A., Graham, S. H., Laub, R. J., Purnell, J. H., Reid, P. I., Shaman, W. Y. M., and Thomas, J. M. (1978) Organic synthesis using sheet silicate intercalates: low temperature conversions of olefins to secondary ethers: Angew. Chem. Int. Ed. Engl. 17, 282–283.CrossRefGoogle Scholar
  2. Adams, J. M., Ballantine, J. A., Graham, S. H., Laub, R. J., Purnell, J. H., Reid, P. I., Shaman, W. Y. M., and Thomas, J. M. (1979) Selective chemical conversions using sheet silicates: low temperature addition of water to 1-alkenes: J. Catal. 58, 238–252.CrossRefGoogle Scholar
  3. Adams, J. M., Bylina, A., and Graham, S.H. (1981a) Shape selectivity in low temperature reactions of C6-alkenes catalyzed by a Cu2+-exchanged montmorillonite: Clay Miner. 16, 325–332.CrossRefGoogle Scholar
  4. Adams, J. M., Bylina, A., and Graham, S. H. (1982a) Conversion of 1-hexene to di-2-hexylether using a Cu2+-smectite catalyst: J. Catal. 75, 190–195.CrossRefGoogle Scholar
  5. Adams, J. M., Clapp, T. V., and Clement, D. E. (1983b) Catalysis by montmorillonites: Clay Miner. 18, 411–421.CrossRefGoogle Scholar
  6. Adams, J. M., Clement, D. E., and Graham, S. H. (1981b) Low temperature reaction of alcohols to form t-butyl ethers using clay catalysts: J. Chem. Res., S254–255.Google Scholar
  7. Adams, J. M., Clement, D. E., and Graham, S. H. (1982b) The synthesis of methyl-t-butyl ether (MTBE) from methanol and isobutene using a clay catalyst: Clays & Clay Minerals 30, 122–134.CrossRefGoogle Scholar
  8. Adams, J. M., Clement, D. E., and Graham, S. H. (1983a) Reactions of alcohols with alkenes over an aluminum-exchanged montmorillonite: Clays & Clay Minerals 32, 129–136.CrossRefGoogle Scholar
  9. Adams, J. M., Davies, S. E., and Graham, S. H. (1982c) Catalysed reactions of organic molecules at clay surfaces: ester breakdown, dimerizations and lactonisations: J. Catal. 78, 197–208.CrossRefGoogle Scholar
  10. Ballantine, J. A., Davies, M., Purnell, H., Rayanakorn, M., Thomas, J. M., and Williams, K. J. (1981a) Chemical conversions using sheet silicates: facile ester synthesis by direct addition of acids to alkenes: J. Chem. Soc. Chem. Comm., 8–9.Google Scholar
  11. Ballantine, J. A., Purnell, H., Rayanakorn, M., Thomas, J. M., and Williams, K. J. (1981b) Chemical conversions using sheet silicates: novel intermolecular elimination of ammonia from amines: J. Chem. Soc. Chem. Comm., 9–10.Google Scholar
  12. Bellville, D. J. and Bauld, N. L. (1981) The cation-radical catalyzed Diels-Alder reaction: J. Amer. Chem. Soc. 103, 718–720.CrossRefGoogle Scholar
  13. Bellville, D. J. and Bauld, N. L. (1982) Selectivity profile of the cation-radical Diels-Alder reaction: J. Amer. Chem. Soc. 104, 2665–2667.CrossRefGoogle Scholar
  14. Budzikiewicz, H., Djerassi, C., and Williams, D. H. (1964) Structure Elucidation of Natural Products by Mass Spectroscopy. Vol. II: Holden-Day, San Francisco, 21–72.Google Scholar
  15. Bylina, A., Adams, J. M., Graham, S. H., and Thomas, J. M. (1980) Chemical conversions using sheet silicates: a simple method for producing methyl t-butyl ether (MTBE): J. Chem. Soc, Chem. Comm., 1003–1004.Google Scholar
  16. den Otter, M. J. A. M. (1970a) The dimerization of oleic acid with a montmorillonite catalyst I: important process parameters; some main reactions: Fette Siefen Anstrichm. 72, 667–673.CrossRefGoogle Scholar
  17. den Otter, M. J. A. M. (1970b) The dimerization of oleic acid with a montmorillonite catalyst II: Glc analysis of the monomer; the structure of the dimer; a reaction model: Fette Siefen Anstrichm. 72, 875–883.CrossRefGoogle Scholar
  18. den Otter, M. J. A. M. (1970c) The dimerization of oleic acid with a montmorillonite catalyst III: test of the reaction model: Fette Siefen Anstrichm. 72, 1056–1066.CrossRefGoogle Scholar
  19. Dessau, R. M. (1983) Diels-Alder cyclization over low acidity large pore zeolites: U.S. Patent 4,384,153, May 17, 3 pp.Google Scholar
  20. Downing, R. S., Van Austel, J., and Joustra, A. H. (1978) Dimerization catalyst: U.S. Patent 4,125,483, Nov. 14, 3 pp.Google Scholar
  21. Eisenbach, D. and Gallei, E. (1979) Infrared spectroscopic investigations relating to coke formation on zeolites: J. Catal. 56, 377–389.CrossRefGoogle Scholar
  22. Frenkel, M. and Heller-Kallai, L. (1983) Interlayer cations as reaction directors in the transformation of limonene on montmorillonite: Clays & Clay Minerals 31, 92–96.CrossRefGoogle Scholar
  23. Laszlo, P. and Lucchetti, J. (1984a) Catalysis of the DielsAlder reaction in the presence of clays: Tetrahedron Lett. 25, 1567–1570.CrossRefGoogle Scholar
  24. Laszlo, P. and Lucchetti, J. (1984b) Easy formation of Diels-Alder cycloadducts between furans and αβ-unsaturated aldehydes and ketones at normal pressure: Tetrahedron Lett. 25, 4387–4388.CrossRefGoogle Scholar
  25. Maxwell, I. E. (1982) Non-acid catalysis with zeolites: in Adv. CataL, D. D. Eley, H. Pines and P. B. Weisz, eds., Acad. Press, New York, 2–73.Google Scholar
  26. McKillop, A. and Young, D. W. (1979) Organic synthesis using supported reagents. Part I: Synthesis, 401–422.Google Scholar
  27. Meuly, W. C. (1972) Synthesis of terpene chemicals from isoprene: An. Acad. Bras. Cienc. 44, 373–382.Google Scholar
  28. Morrison, R. T. and Boyd, R. N. (1973) Organic Chemistry: 3rd ed., Allyn and Bacon, Boston, 948–952.Google Scholar
  29. Mortland, M. M. (1968) Protonation of compounds at clay mineral surfaces: Trans. 9th Int. Cong. Soil Sci., J. W. Holmes, ed., Elsevier, New York, 691–699.Google Scholar
  30. Pinnavaia, T. J., Raythatha, R., Guo-Shuh Lee, J., Hallovan, L. J., and Hoffman, J. F. (1979) Intercalation of catalytically active metal complexes in mica-type silicates. Rhodium hydrogénation catalysts: J. Amer. Chem. Soc. 101, 6891–6897.CrossRefGoogle Scholar
  31. Reimlinger, H. K., De Ruiter, E. H., and Kruerke, U. K. (1969) Butadiene reactions catalyzed by copper (1) zeolite: U.S. Patent 3,444,253, May 13, 2 pp.Google Scholar
  32. Ryhage, R. and von Sydow, E. (1963) Mass spectrometry of terpenes—I. Monoterpene hydrocarbons: Acta Chem. Scand. 17, 2025–2035.CrossRefGoogle Scholar
  33. Scurrell, M. S. (1978) Heterogenized homogenous catalysts: Spec. Period. Rep. Catal. 2, 215–242.Google Scholar
  34. Thomas, A. F. and Willhalm, B. (1964) Les spectres de masse dans l’analyse—les spectres de masse des hydrocarbures monoterpeniques: Helv. Chim. Acta 47, 475–488.CrossRefGoogle Scholar
  35. Tolman, C. A. (1972) Chemistry of tetrakis (trimethyl phosphate) nickel hydride, HNi(P(OEt)3)4. IV. Mechanism of olefin isomerisation. J. Amer. Chem. Soc. 94, 2994–2999.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1986

Authors and Affiliations

  • J. M. Adams
    • 1
  • T. V. Clapp
    • 1
  1. 1.Edward Davies Chemical LaboratoriesUniversity College of WalesAberystwyth, DyfedUK

Personalised recommendations