Clays and Clay Minerals

, Volume 34, Issue 3, pp 275–280 | Cite as

Characterization of Goethite and Hematite in a Tunisian Soil Profile By Mössbauer Spectroscopy

  • R. E. Vandenberghe
  • E. De Grave
  • G. De Geyter
  • C. Landuydt


As part of the characterization of a Tunisian red soil profile, six samples, taken at different depths, were investigated by Mössbauer spectroscopy at room temperature and at 80 K to obtain information about the various types of Fe oxides present. By considering magnetic hyperfine field distributions, the spectra of goethite and hematite were well resolved. Chemical analyses of the samples revealed a partial substitution of Fe by Al and Mn. The spectral behavior of the goethite was predominantly influenced by crystallinity and amount of Al substitution which resulted in a reduction of the magnetic hyperfine field. The effect of Mn substitution was much more pronounced in the hematite spectrum as a consequence of a stronger suppression of the Morin transition by Mn than by Al.

Key Words

Aluminum Goethite Hematite Iron Manganese Mössbauer spectroscopy Soil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amarisiriwardena, D. D., De Grave, E., Bowen, L. H., and Weed, S. B. (1986) Quantitative determination of aluminum-substituted goethite-hematite mixtures by Mössbauer spectroscopy: Clays & Clay Minerals 34, 250–256.CrossRefGoogle Scholar
  2. Bancroft, G. M. (1973) Mössbauer Spectroscopy: An Introduction for Chemists and Geochemists: McGraw-Hill Ltd., Maidenhead, United Kingdom, 226–239.Google Scholar
  3. Chambaere, D. G., Persoons, R., De Grave, E., and Verbeek, A.E. (1984) Uncertainties in the use of relative Mössbauer constants with mixtures containing iron hydroxides: Abstracts 25th Meeting Mössbauer Spectroscopy Discussion Group, Oxford, United Kingdom, Mössbauer Effect Data Center, Univ. North Carolina, Asheville, North Carolina, 33-33a.Google Scholar
  4. Chrisman, B. L. and Tumolillo, T. A. (1971) Computer analysis of Mössbauer spectra: Computer Phys. Commun. 2, 322–330.CrossRefGoogle Scholar
  5. De Grave, E., Bowen, L. H., and Weed, S. B. (1982) Mössbauer study of aluminum-substituted hematites: J. Magn. Magn. Mat. 27, 98–108.CrossRefGoogle Scholar
  6. Flanders, P. J. and Remeika, J. P. (1965) Magnetic properties of hematite single crystals: Phil. Mag. 11, 1271–1288.CrossRefGoogle Scholar
  7. Fysh, S. A. and Clark, P. E. (1982) Aluminous goethite: a Mössbauer study: Phys. Chem. Minerals 8, 180–187.CrossRefGoogle Scholar
  8. Golden, D. C., Bowen, L. H., Weed, S. B., and Bigham, J. M. (1979) Mössbauer studies of synthetic and soil-oc-curring aluminum-substitutedgoethites: Soil Sci. Soc. Amer. J. 43, 802–808.CrossRefGoogle Scholar
  9. Goodman, B. A. and Lewis, D. G. (1981) Mössbauer spectra of aluminous goethites: J. Soil Sci. 32, 351–363.CrossRefGoogle Scholar
  10. Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate: in Clays & Clay Minerals, Proc. 7th Natl. Conf, Washington, D.C., 1958, Ada Swineford, ed., Pergamon Press, New York, 317–327.Google Scholar
  11. Mørup, S., Madson, B. M., Franck, J., Villadsen, J., and Koch, C. J. W. (1983) A new interpretation of Mössbauer spectra of microcrystalline goethites: “super-ferromagnetism” or “super-spin-glass” behaviour: J. Magn. Magn. Mat. 40, 163–174.CrossRefGoogle Scholar
  12. Murad, E. (1982) The characterization of goethite by Mössbauer spectroscopy: Amer. Mineral. 67, 1007–1011.Google Scholar
  13. Murad, E. and Schwertmann, U. (1983) The influence of aluminum substitution and crystallinity on the Mössbauer spectra of goethite: Clay Miner. 18, 301–312.CrossRefGoogle Scholar
  14. Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung: Z. Pflanzenernähr. Düng. Bodenk. 105, 194–202.CrossRefGoogle Scholar
  15. van der Kraan, A. M. (1972) Mössbauer effect studies of superparamagnetic a-FeOOH and a-Fe2O3: Ph.D. thesis, Univ. Delft, Delft, The Netherlands, p. 84.Google Scholar
  16. Wivel, C. O. and Morup, S. (1981) Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra: J. Phys. E 14, 605–610.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1986

Authors and Affiliations

  • R. E. Vandenberghe
    • 1
  • E. De Grave
    • 1
  • G. De Geyter
    • 2
  • C. Landuydt
    • 2
  1. 1.Laboratory of MagnetismGent State UniversityBelgium
  2. 2.Laboratory of Mineralogy, Petrography and MicropedologyGent State UniversityBelgium

Personalised recommendations