Clays and Clay Minerals

, Volume 34, Issue 3, pp 266–274 | Cite as

Influence of Sulfate on Fe-Oxide Formation: Comparisons with a Stream Receiving Acid Mine Drainage

  • K. S. Brady
  • J. M. Bigham
  • W. F. Jaynes
  • T. J. Logan


An ochreous precipitate isolated from a stream receiving acid-sulfate mine drainage was found to consist primarily of goethite and lesser amounts of ferrihydrite-like materials. The Fe-oxide fraction, including goethite, was almost totally soluble in acid ammonium oxalate. Similar materials were produced in the laboratory by hydrolysis of ferric nitrate solutions containing 250 to 2000 μg/ml sulfate as Na2SO4. Initial precipitates of natrojarosite transformed to Fe-oxides upon aging for 30 days at pH 6.0. The proportion of goethite in the final products decreased with increasing sulfate (SO4/Fe = 0.2 to 1.8) in the initial hydrolysis solutions; only ferrihydrite-like materials were produced at SO4/Fe ratios > 1.5. Variations in SO4/Fe solution ratios also produced systematic changes in the color (10R to 7.5YR) and surface areas (49 to 310 m2/g) of the dried precipitates, even though total S contents were relatively constant at 2.5 to 4.0%.

Key words

Acid mine drainage Feroxyhite Ferrihydrite Goethite Iron Natrojarosite Sulfate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brady, K. (1982) Iron precipitates from acid coal mine drainage in southeasern Ohio: origin, occurrence and regional significance: Ph.D. thesis, Ohio State Univ., Columbus, Ohio, 181 pp.Google Scholar
  2. Brown, G. (1980) Associated minerals: in Crystal Structures of Clay Minerals and Their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 361–410.Google Scholar
  3. Campbell, A. and Schwertmann, U. (1984) Iron oxide mineralogy of placic horizons: J. Soil Sci. 35, 569–582.CrossRefGoogle Scholar
  4. Carlson, L. and Schwertmann, U. (1980) Natural occurrence of feroxyhite (δ′-FeOOH): Clays & Clay Minerals 28, 272–280.CrossRefGoogle Scholar
  5. Carlson, L. and Schwertmann, U. (1981) Natural ferrihydrites in surface deposits from Finland and their association with silica: Geochim. Cosmochim. Acta 45, 421–429.CrossRefGoogle Scholar
  6. Chukhrov, F. V., Zvyagin, B. B. Ermilova, L. P., and Gorshkov, A. I. (1973) New data on iron oxides in the weathering zone: in Proc. Int. Clay Conf., Madrid, 1972, J. M. Serratosa, ed., Div. Ciencias C.S.I.C, Madrid, 397–404.Google Scholar
  7. Chukhrov, F. V., Zvyagin, B. B. Gorshkov, A. I., Yermilova, L. P. Korovuskov, V. V., Rudnitskaya, Ye. S., and Yakubovskaya, N. Yu 1977 Feroxyhyte, a new modification of FeOOH: Int. Geol. Rev. 19, 873–890.CrossRefGoogle Scholar
  8. Crosby, S. A., Glasson, D. R., Cuttler, A. H., Butler, I., Turner, D. R., Whitfield, M., Millward, G. E. (1983) Surface areas and porosités of Fe(III)- and Fe(II)-derived oxyhy-droxides: Environ. Sci. Technol. 17, 709–713.CrossRefGoogle Scholar
  9. Dousma, J., den Ottelander, D., and de Bruyn, P. L. (1979) The influence of sulfate ions on the formation of iron(III) oxides: J. Inorg. Nucl. Chem. 41, 1565–1568.CrossRefGoogle Scholar
  10. Fenchel, T. and Blackburn, T. H. (1979) Bacteria and Mineral Cycling: Academic Press, New York, 142–144.Google Scholar
  11. Fischer, W. R. (1972) Die Wirkung von zweiwertigem Eisen auf Lösung und Umwandlung von Eisen(III)-hydroxiden: in Pseudogley and Gley, E. Schlichting and U. Schwertmann, eds., Verlag Chemie, Weinheim/Bergstr., 37–44.Google Scholar
  12. Harrison, J. B. and Berkheiser, V. E. (1982) Anion interactions with freshly prepared hydrous iron oxides: Clays & Clay Minerals 30, 97–102.CrossRefGoogle Scholar
  13. Heaney, S. I. and Davison, W. (1977) The determination of ferrous iron in natural waters with 2,2′ bipyridyl: Limn. Oceanogr. 22, 753–760.CrossRefGoogle Scholar
  14. Lazaroff, N. (1963) Sulfate requirement for iron oxidation by Thiobacillus ferrooxidans: J. Bad. 85, 78–83.Google Scholar
  15. Lazaroff, N., Sigal, W., and Wasserman, A. (1982) Iron oxidation and precipitation of ferric hydroxysulfates by resting Thiobacillus ferrooxidans cells: Appl. Environ. Microbiol. 43, 924–938.Google Scholar
  16. Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate: in Clays and Clay Minerals, Proc. 7th Natl. Conf, Washington, D.C., 1958, Ada Swineford, ed., Pergamon Press, New York, 317–327.Google Scholar
  17. Nordstrom, D. K. (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals: in Acid Sulfate Weathering, J. A. Kittrick, D S. Fanning, and L. R. Hosner, eds., Soil Sci. Soc. Amer., Madison, Wisconsin, 37–56.Google Scholar
  18. Robinson, G. D. (1981) Adsorption of Cu, Zn and Pb near sulfide deposits by hydrous manganese-iron oxide coatings on stream alluvium: Chem. Geol. 33, 65–79.CrossRefGoogle Scholar
  19. Russell, J. D. (1979) Infrared spectroscopy of ferrihydrite: evidence for the presence of structural hydroxyl groups: Clay Miner. 14, 190–214.Google Scholar
  20. Schulze, D. G. (1981) Identification of soil iron oxide minerals by differential X-ray diffraction: Soil Sci. Soc. Amer. J. 45, 437–440.CrossRefGoogle Scholar
  21. Schwertmann, U. (1964) Differenzierung der Eisenoxide des Boden durch photochemische Extraktion mit saurer Ammoniumoxalat-Lösung: Z. Pfanzenern. Düng. Bodenkunde 105, 194–202.CrossRefGoogle Scholar
  22. Schwertmann, U. and Fischer, W. R. (1973) Natural “amorphous” ferric hydroxide: Geoderma 10, 237–247.CrossRefGoogle Scholar
  23. Schwertmann, U., Schulze, D. G., and Murad, E. (1982) Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and Mössbauer spectroscopy: Soil Sci. Soc. Amer. J. 46, 869–875.CrossRefGoogle Scholar
  24. Singer, P. C. and Stumm, W. (1970) Acid mine drainage: the rate determining step: Science 197, 1121–1123.CrossRefGoogle Scholar
  25. Stumm, W. and Morgan, J. J. (1981) Aquatic Chemistry, 2nd ed., Wiley, New York, 780 pp.Google Scholar
  26. Towe, K. M. and Bradley, W. F. (1967) Mineralogical constitution of colloidal “hydrous ferric oxides”: J. Colloid Interface Sci. 24, 384–392.CrossRefGoogle Scholar
  27. Vuorinen, A., Hiltunen, P., Hsu, J. C., and Tuovinen, O. H. (1983) Solubilization and speciation of iron during pyrite oxidation by Thiobacillus ferrooxidans: Geomicrobiol. J. 3, 95–120.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1986

Authors and Affiliations

  • K. S. Brady
    • 1
  • J. M. Bigham
    • 1
  • W. F. Jaynes
    • 1
  • T. J. Logan
    • 1
  1. 1.Department of AgronomyThe Ohio State UniversityColumbusUSA

Personalised recommendations