Clays and Clay Minerals

, Volume 34, Issue 3, pp 250–256 | Cite as

Quantitative Determination of Aluminum-Substituted Goethite-Hematite Mixtures By Mössbauer Spectroscopy

  • D. D. Amarasiriwardena
  • E. DeGrave
  • L. H. Bowen
  • S. B. Weed


Mixtures of synthetic Al-substituted goethite (α-Fe0.814Al0.186OOH) and hematite (α-Fe1.658Al0.342O3) (75, 50, 25, 3% hematite by weight) were studied by Mössbauer spectroscopy to evaluate the use of that technique for quantitative analysis. Mössbauer spectra for these mixtures, obtained in the temperature range 12–130 K, were better fitted by a distribution of magnetic fields than by two magnetic sextets. Spectra at 80 K were equally as good as those from lower temperature to determine the hematitegoethite ratio. The recoil-free fractions of the individual components were about equal at any fixed temperature, but thickness effects caused as much as 30% error in the determination of the ratio of components in mixtures.

Key Words

Aluminum Goethite Hematite Mössbauer spectroscopy Quantitative mineralogy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bigham, J. M., Golden, D. C., Bowen, L. H., Buol, S. W., and Weed, S. B. (1978) Iron oxide mineralogy of well-drained ultisols and oxisols: I. Characterization of iron oxides in soil clays by Mössbauer spectroscopy, X-ray diffractometry and selected chemical techniques: Soil Sci. Soc. Amer. J. 42, 816–825.CrossRefGoogle Scholar
  2. Bowen, L. H. and Weed, S. B. (1981) Mössbauer spectroscopic analysis of iron oxides in soils: in Mössbauer Spectroscopy and its Chemical Application, J. G. Stevens and G. K. Shenoy, eds., American Chemical Soc, Washington, D.G, 247–261.CrossRefGoogle Scholar
  3. Childs, G. W., Goodman, B. A., and Churchman, G. J. (1979) Application of Mössbauer spectroscopy to the study of iron oxides in some red and yellow/brown soil samples from New Zealand: in Proc. Int. Clay Conf., Oxford, 1978, M. M. Mortland and V. G. Farmer, eds., Elsevier, Amsterdam, 555–565.Google Scholar
  4. DeGrave, E., Bowen, L. H., and Weed, S. B. (1982a) Mössbauer study of aluminum-substituted hematites: J. Magn. Magn. Mat. 27, 98–108.CrossRefGoogle Scholar
  5. DeGrave, E., Bowen, L. H., and Hedges, S. W. (1982b) Mössbauer spectroscopy with a microprocessor: a versatile software package: Nucl. Inst. Methods 200, 303–310.CrossRefGoogle Scholar
  6. Forsyth, J. B., Hedley, I. G., and Johnson, G. E. (1968) The magnetic structure and hyperfine field of goethite (μ-FeOOH): J. Phys. C 1, 179–188.CrossRefGoogle Scholar
  7. Fysh, S. A. and Clark, P. E. (1982a) Aluminous goethite: a Mössbauer study: Phys. Chem. Minerals 8, 180–187.CrossRefGoogle Scholar
  8. Fysh, S. A. and Clark, P. E. (1982b) Aluminous hematite: a Mössbauer study: Phys. Chem. Minerals 8, 257–267.CrossRefGoogle Scholar
  9. Fysh, S. A. and Clark, P. E. (1984) On Mössbauer analysis of mineral mixtures having environmentally broadened spectral lines: Phys. Stat. Sol. 84, 31–38.CrossRefGoogle Scholar
  10. Golden, D. G (1978) Physical and chemical properties of aluminum-substituted goethite: Ph.D. thesis, North Carolina State University, Raleigh, North Carolina, 174 pp.Google Scholar
  11. Golden, D. G, Bowen, L. H., Weed, S. B., and Bigham, J. M. (1979) Mössbauer studies of synthetic and soil-oc-curring aluminum-substituted goethites: Soil Sci. Soc. Amer. J. 43, 802–808.CrossRefGoogle Scholar
  12. Goodman, B. A. (1980) Mössbauer spectroscopy: in Advanced Chemical Methods for Soil and Clay Minerals Research, J. W. Stucki and W. L. Banwart, eds., D. Reidel, Dordrecht, 1–92.Google Scholar
  13. Heberle, J. (1971) The Debye integrals, the thermal shift and the Mössbauer fraction: in Mössbauer Effect Methodology, Vol. 7, I. J. Gruverman, ed., Plenum Press, New York, 299–308.CrossRefGoogle Scholar
  14. Ibanga, I. J., Buol, S. W., Weed, S. B., and Bowen, L. H. (1983) Iron oxides in petroferric materials: Soil Sci. Soc. Amer. J. 47, 1240–1246.CrossRefGoogle Scholar
  15. Kodama, H., McKeague, J. A., Tromblay, R. J., Gosselin, J. R., and Townsend, M. G. (1977) Characterization of iron oxide compounds in soil by Mössbauer and other methods: Can. J. Earth Sci. 14, 1–15.CrossRefGoogle Scholar
  16. Kundig, W., Bommel, H., Constabaris, G., and Lindquist, R. H. (1966) Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect: Phys. Rev. 142, 327–333.CrossRefGoogle Scholar
  17. Lang, G. (1963) Interpretation of experimental Mössbauer spectrum areas: Nucl. Instr. Meth. 24, 425–428.CrossRefGoogle Scholar
  18. Murad, E. and Schwertmann, U. (1983) The influence of aluminum substitution and crystallinity on the Mössbauer spectra of goethite: Clay Miner. 18, 301–312.CrossRefGoogle Scholar
  19. Norrish, K. and Taylor, R. M. (1961) The isomorphous replacement of iron by aluminum in soil goethites: J. Soil Sci. 12, 294–306.CrossRefGoogle Scholar
  20. Schwertmann, L. T., Fitzpatrick, R. W., and Le Roux, J. (1977) Al substitution and differential disorder in soil hematites: Clays & Clay Minerals 25, 373–374.CrossRefGoogle Scholar
  21. Schwertmann, U., Murad, E., and Schulze, D. G. (1982) Is there holocene reddening (hematite formation) in soils of axeric temperature areas?: Geoderma 27, 209–223.CrossRefGoogle Scholar
  22. Wivel, G. O. and Merup, S. (1981) Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra: J. Phys. E14, 605–610.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1986

Authors and Affiliations

  • D. D. Amarasiriwardena
  • E. DeGrave
    • 1
    • 3
  • L. H. Bowen
    • 1
  • S. B. Weed
    • 2
  1. 1.Department of ChemistryUSA
  2. 2.Department of Soil ScienceNorth Carolina State UniversityRaleighUSA
  3. 3.Laboratory for MagnetismGentBelgium

Personalised recommendations