Advertisement

Clays and Clay Minerals

, Volume 34, Issue 3, pp 239–249 | Cite as

Relation Between Structural Disorder and Other Characteristics of Kaolinites and Dickites

  • G. W. Brindley
  • Chih-Chun Kao
  • J. L. Harrison
  • M. Lipsicas
  • R. Raythatha
Article

Abstract

A suite of Georgia kaolinites, ranging from well-ordered to very poorly ordered samples, were studied to explore correlations between degree of structural disorder, geological environment, Fe3+ content, Fe3+ electron paramagnetic resonance (EPR) spectrum, and infrared (IR) hydroxyl-stretching band frequencies and bandwidths. Samples from different localities showed a wide range of disorder which appears to be related to differences in their geological environments. High iron content correlated strongly with low degree of order. The areas of both the I and E components of the EPR spectrum and the fractional I area correlated inversely with degree of order. Fourier-transform IR studies of kaolinites and dickites showed that (1) interlayer hydrogen bonding is weaker in dickite than in kaolinite; (2) frequency of the ν1 stretching band of the inner-surface hydroxyls increases sequentially from well-ordered kaolinite through the disordered structures to well-ordered dickite, which is consistent with a model for disorder based on vacancy displacement; and (3) the character and temperature dependence of the inner hydroxyl-stretching band is not compatible with the crystal structures of kaolinite and dickite as refined by Suitch and Young.

Key Words

Crystallinity Dickite Disorder Electron paramagnetic resonance Fourier-transform infrared spectroscopy Kaolinite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. M. (1983) Hydrogen atom positions in kaolinite by neutron profile refinement: Clays & Clay Minerals 31, 352–356.CrossRefGoogle Scholar
  2. Adams, J. M. and Hewat, A. W. (1981) Hydrogen atom positions in dickite: Clays & Clay Minerals 29, 316–319.CrossRefGoogle Scholar
  3. Angel, B. R., Jones, J. P. E., and Hall, P. L. (1974) Electron spin resonance studies of doped synthetic kaolinite. I: Clay Miner. 10, 247–255.CrossRefGoogle Scholar
  4. Bailey, S. W. (1963) Polymorphism of the kaolin minerals: Amer. Mineral. 48, 1196–1209.Google Scholar
  5. Brindley, G. W. and Nakahira, M. (1958) Further considerations of the crystal structure of kaolinite: Mineral. Mag. 31, 781–786.Google Scholar
  6. Brindley, G. W. and Porter, A. R. D. (1978) Occurrence of dickite in Jamaica: ordered and disordered varieties: Amer. Mineral. 63, 554–562.Google Scholar
  7. Brindley, G. W. and Robinson, K. (1946) The structure of kaolinite: Mineral. Mag. 27, 242–253.Google Scholar
  8. Cruz-Cumplido, M., Sow, C., and Fripiat, J. J. (1982) Spectre infrarouge des hydroxyles, cristallinité et énergie de cohésion des kaolins: Bull. Minerai. 105, 493–498.Google Scholar
  9. Farmer, V. C. (1964) Infrared absorption of hydroxyl groups in kaolinite: Science 145, 1189–1190.CrossRefGoogle Scholar
  10. Farmer, V. C. and Russell, J. D. (1964) The infrared spectra of layer silicates: Spectrochim. Acta 20, 1149–1173.CrossRefGoogle Scholar
  11. Giese, R. F., Jr. (1982) Theoretical studies of the kaolin minerals. Electrostatic calculations: Bull. Mineral. 105, 417–424.Google Scholar
  12. Giese, R. F., Jr. and Datta, P. (1973) Hydroxyl orientation in kaolinite, dickite and nacrite: Amer. Mineral. 58, 471–479.Google Scholar
  13. Hall, P. L. (1973) Electron spin resonance studies of aluminasilicate minerals and associated organic substances: Ph.D. thesis, University of London, 209 pp.Google Scholar
  14. Hinckley, D. N. (1963) Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina: in Clays and Clay Minerals, Proc. 11th Natl. Conf., Ottawa, Ontario, 1962, Ada Swineford, ed., Pergamon Press, New York, 229–235.Google Scholar
  15. Jones, J. P.E., Angel, B.R., and Hall, P. L. (1974) Electron spin resonance studies of doped synthetic kaolinite. II: Clay Miner. 10, 257–270.CrossRefGoogle Scholar
  16. Keller, W. D., Pickett, E. E., and Reesman, A. L. (1966) Elevated dehydroxylation temperature of the Keokuk geode kaolinite: in Proc. Inter. Clay Conf., Jerusalem, 1966, Vol. 1, L. Heller and A. Weiss, eds., Israel Prog. Sci. Trans., Jerusalem, 75–85.Google Scholar
  17. Ledoux, R. L. and White, J. L. (1964a) Infrared study of selective deuteration of kaolinite and halloysite at room temperature: Science 145, 47–49.CrossRefGoogle Scholar
  18. Ledoux, R. L. and White, J. L. (1964b) Infrared studies of the hydroxyl groups in intercalated kaolinite complexes: in Clays and Clay Minerals, Proc. 13th Natl. Conf., Madison, Wisconsin, 1964, W. F. Bradley and S. W. Bailey, eds., Pergamon Press, New York, 289–315.Google Scholar
  19. Meads, R. E. and Maiden, P. S. (1975) Electron-spin resonance in natural kaolinites containing Fe3+ and other transition metal ions: Clay Miner. 10, 313–345.CrossRefGoogle Scholar
  20. Mestdagh, M. M., Herbillon, A. J., Rodrique, L., and Rouxhet, P. G. (1982) Evaluation du rôle du fer structural sur la cristallinité des kaolinite: Bull. Minerai. 105, 457–466.Google Scholar
  21. Mestdagh, M. M., Vielvoye, L., and Herbillon, A. J. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content: Clay Miner. 15, 1–13.CrossRefGoogle Scholar
  22. Newnham, R. E. (1961) A refinement of the dickite structure and some remarks on polymorphism in kaolin minerais: Minerai. Mag. 32, 683–704.Google Scholar
  23. Newnham, R. E., and Brindley, G. W. (1956) The crystal structure of dickite: Acta Crystallogr. 9, 759–764.CrossRefGoogle Scholar
  24. Newnham, R. E. and Brindley, G. W. (1957) The structure of dickite: correction: Acta Crystallogr. 10, 88.CrossRefGoogle Scholar
  25. Norton, F. H. and Speil, S. (1938) The measurement of particle sizes in clays: J. Amer. Ceram. Soc. 21, 89–97.CrossRefGoogle Scholar
  26. Plançon, A. and Tchoubar, C. (1977a) Determination of structural defects in phyllosilicates by X-ray powder diffraction—I. Principle of calculation of the diffraction phenomenon: Clays & Clay Minerals 25, 430–435.CrossRefGoogle Scholar
  27. Plançon, A. and Tchoubar, C. (1977b) Determination of structural defects in phyllosilicates by X-ray powder diffraction—II. Nature and proportion of defects in natural kaolinites: Clays & Clay Minerals 25, 436–450.CrossRefGoogle Scholar
  28. Prost, R. (1984) Etude par spectroscopie infrarouge à basse température des groupes OH de structure de la kaolinite, de la dickite et de la nacrite: Agronomia 4, 403–406.CrossRefGoogle Scholar
  29. Robertson, R. H. S., Brindley, G. W., and Mackenzie, R. C. (1954) Mineralogy of kaolin clays from Pugu, Tanganyika: Amer. Mineral. 39, 118–139.Google Scholar
  30. Rouxhet, P. G., Samudacheata, N., Jacobs, H., and Anton, O. (1977) Attribution of the OH stretching bands of kaolinite: Clay Miner. 12, 171–178.CrossRefGoogle Scholar
  31. Stoch, L. (1964) Thermal dehydroxylation of minerals of the kaolinite group: Bull. Acad. Polon. Sci. Ser. Sci. Geol. Geogr. 12, 173–180.Google Scholar
  32. Stoch, L., Rybicka, E., and Gorniak, K. (1979) Mineralogical composition of kaolinite clays from the “Janina” mine at Suszki near Boleslawiec: Mineral. Polon. 10, 63–79.Google Scholar
  33. Suitch, P. R. and Young, R. A. (1983) Atom positions in highly ordered kaolinite: Clays & Clay Minerals 31, 357–366.CrossRefGoogle Scholar
  34. Tchoubar, C., Plançon, A., Ben Brahim, J., Clinard, C., and Sow, C. (1982) Caractéristiques structurales des kaolinites désordonnées: Bull. Mineral. 105, 477–491.Google Scholar
  35. Zvyagin, B. B. (1960) Electron diffraction determination of the structure of kaolinite: Kristallografiya 5, 32–41.Google Scholar

Copyright information

© The Clay Minerals Society 1986

Authors and Affiliations

  • G. W. Brindley
    • 1
  • Chih-Chun Kao
    • 1
  • J. L. Harrison
    • 2
  • M. Lipsicas
    • 3
  • R. Raythatha
    • 3
  1. 1.Mineral Sciences BuildingThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Georgia Kaolin ResearchSpringfieldUSA
  3. 3.Schlumberger-Doll ResearchRidgefieldUSA

Personalised recommendations