Advertisement

Clays and Clay Minerals

, Volume 33, Issue 2, pp 135–144 | Cite as

Zeolites in Eocene Basaltic Pillow Lavas of the Siletz River Volcanics, Central Coast Range, Oregon

  • Terry E. C. Keith
  • Lloyd W. Staples
Article

Abstract

Zeolites and associated minerals occur in a tholeiitic basaltic pillow lava sequence that makes up part of the Eocene Siletz River Volcanics in the central Coast Range, Oregon. Regional zoning of zeolite assemblages is not apparent; the zeolites formed in joints, fractures, and interstices, although most occur in central cavities of basalt pillows. The zeolites and associated minerals identified, in general order of paragenetic sequence, are smectite, pyrite, calcite (small spheres), thomsonite, natrolite, analcime, scolecite, mesolite, stilbite, heulandite, apophyllite, chabazite, mordenite, calcite (scalenohedra and twinned rhombohedra), laumontite, and amethystine quartz. Common three-mineral assemblages are: natrolite-analcime-stilbite, stilbite-heulandite-chabazite, stilbite-apophyllite-chabazite, and natrolite-mesolite-laumontite.

Alteration of basaltic glass, which was initially abundant, appears to have been an important factor in formation of the zeolites. Isotopic data suggest that zeolitization occurred during a low-temperature (60°–70°C) submarine hydrothermal event, or by reactions of cold (∼10°C) meteoric water with basalt over a long time. The occurrence of different mineral assemblages in cavities of adjacent basalt pillows indicates that these minerals crystallized in closed systems that were isolated as fractures and joints were sealed by deposition of smectite and early zeolites. Although the total chemical composition of the mineral assemblages in cavities is similar, different mineral species formed because of the sensitivity of zeolite minerals to slight variations in physical and chemical conditions within individual cavities.

Key Words

Analcime Apophyllite Isotope abundance Laumontite Mesolite Pillow lava Smectite Zeolites 

Резюме

Цеолиты и связанные с ними минералы встречаются в толеитовой базальтовой подушковой лаве, которая является частью эоценовых вулканических пород Сайлетз Ривер в центральной области орегонского побережья. Районирование цеолитовых отложений не является очевидным; цеолиты формировались в узлах, тпещинах и щелях, но самое большое их количество находится в центральных пустотах базальтовых подушек. Цеолиты и связанные с ними минералы находятся в следующем общем порядке парагенетической серии: смектит, пирит, кальцит (малые шарики), томсонит, на-тролит, анальцим, сколесит, месолит, стильбит, гейландит, апофиллит, хабазит, морденит, кальцит (разносторонние тречгольники и спаренные ромбоэдры), ломонит, и аметистовый кварц. Обычные трех-минеральные составы это: натролит-аналышм-стильбит, стильбит-гейландит-хабазит, стиль-бит-апофиллит-хабазит, и натролит-месолит-ломонит.

Изменение базальтового стекла, которое сначала находилось в большом количестве, кажется значительным фактором в процессе формирования цеолитов. Изотопные данные указывают на то, что цеолитизация происходила во время низко-температурного подводного гидротермального превращения, или путем реакции холодной (∼ 10°С) атмосферической воды с базальтом в течение длинного периода времени. Залегание различных минеральных отложений в пустотах соседних базальтовых подушек указывает на то, что эти минералы кристаллизировались в замкнутых системах, которые были отвелены в виде трещин и узлов, уплотненных осаждением смектита и первоначальных цеолитов. Хотя полная химическая композиция минеральных отложений в пустотах являетсая подобной, различные минералы формировались в результате чувствительности цеолитовых минералов к небольшим изменениям в физических и химических условиях внутри индивидуальных пустот. [Е.G.]

Zusammenfassung

Zeolithe und Begleitminerale treten in einer tholeitbasaltischen Abfolge von Pillowlaven auf, die einen Teil der eozänen Siletz River Vulkane, Central Coast Range, Oregon, darstellt. Eine regionale zonare Verteilung der Zeolithvergesellschaftungen ist nicht zu beobachten; die Zeolithe bildeten sich in Klüften, Spalten, und Zwischenräume, obwohl die meisten in zentralen Hohlräumen der Basaltpillows auftreten. Die identifizierten Zeolithe und Begleitminerale sind in der allgemeinen paragenetischen Abfolge: Smektit, Pyrit, Calcit (kleine Kugeln), Thomsonit, Natrolith, Analcim, Skolezit, Mesolith, Stilbit, Heulandit, Apophyllit, Chabasit, Mordenit, Calcit (Skalenoeder und verzwillingte Rhomboeder), Laumontit, und Amethyst-artiger Quarz. Häufige Vergesellschaftungen aus drei Mineralen sind Natrolith-Analcim-Stilbit, Stilbit-Heulandit-Chabasit, Stilbit-Apophyllit-Chabasit, und Natrolith-Mesolith-Laumontit.

Die Umwandlung von basaltischem Glas, das ursprünglich sehr häufig war, scheint bei der Zeolithbildung ein wichtiger Faktor gewesen zu sein. Isotopen-Daten deuten darauf hin, daß die Zeolithisierung während eines niedrig temperierten (60°–70°C) submarinen hydrothermalen Ereignisses stattgefunden hat, oder durch die Reaktion von kaltem (etwa 10°C) meteorischem Wasser mit dem Basalt über eine lange Zeit. Das Auftreten verschiedener Mineralvergesellschaftungen in den Hohlräumen benachbarter Basaltpillows deutet darauf hin, daß diese Minerale in geschlossenen Systemen kristallisierten, die voneinander getrennt waren, da die Spalten und Klüfte durch die Ablagerung von Smektit und früh gebildeten Zeolithen verschlossen waren. Obwohl der Gesamtchemismus der Mineralvergesellschaftungen in den Hohlräumen ähnlich ist, bildeten sich verschiedene Mineralarten. Der Grund ist die Empfindlichkeit der Zeolithminerale gegenüber geringen Änderungen der physikalischen und chemischen Bedingungen innerhalb der einzelnen Hohlräume. [U.W.]

Résumé

Des zéolites et minéraux associés se trouvent dans une séquence de laves “coussins” tholéiitiques basaltiques qui constitue une partie des roches volcaniques Eocènes de la Rivière Siletz dans la Coast Range Centrale, Oregon. Un zoning régional d’assemblages de zéolites n’est pas apparent; les zéolites se sont formées dans des joints, fractures et interstices, quoique la plupart se trouvent dans des cavités centrales de coussins de basalt. Les zéolites et minéraux associés identifiés, en ordre général de séquence paragénétique sont smectite, pyrite, calcite (petites sphères), thomsonite, natrolite, analcime, scolecite, mésolite, stilbite, heulandite, apophyllite, chabazite, mordénite, calcite (scalénohédrons et rhombohédrons jumellés), laumonite, et quartz amethystine. Des assemblages de 3 minéraux communs sont natrolite-analcime-stilbite, stilbite-heulandite-chabazite, stilbite-apophyllite-chabazite, et natrolite-mésolite-laumonite.

L’altération de verre basaltique, qui était abondant initialement, semble avoir été un facteur important dans la formation de zéolites. Les données isotopiques suggérent que la zéolitisation s’est passée pendant un évenement hydrothermique sousmarin à basse température (60°–70°C), ou par des réactions d’eau météorique froide avec du basalt pendant longtemps. L’emplacement de différents assemblages minéraux dans les cavités de coussins de basalt adjacents indique que ces minéraux se sont cristallisés dans des systèmes fermés qui étaient isolés, comme les fractures et les joints étaient hermétiquement fermés par le dépôt de smectite et des premières zéolites. Quoique la composition chimique totale des assemblages minéraux dans les cavités est semblable, des espèces de minéraux différents se sont formées à cause de la sensitivité des minéraux zéolites à de légères variations dans les conditions physiques et chimiques au sein des cavités individuelles. [D.J.]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti, A., Pongiluppi, D., and Vezzalina, G. (1982) The crystal chemistry of natrolite, mesolite and scolecite: N. Jb. Miner. Abh. 143, 231–248.Google Scholar
  2. Arnórsson, S., Gunnlaugsson, E., and Svavarsson, H. (1983) The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions: Geochim. Cosmochim. Acta 47, 547–566.CrossRefGoogle Scholar
  3. Aumento, F., Loncarevic, B., and Ross, D.I. (1971) Hudson geotraverse: geology of the Mid-Atlantic Ridge at 45°N: Phil. Trans. Roy. Soc. Lond. A, 268, 623–650.CrossRefGoogle Scholar
  4. Ballard, R. D. and Moore, J. G. (1977) Photographic Atlas of the Mid-Atlantic Ridge Rift Valley: Springer-Verlag, New York, 114 pp.CrossRefGoogle Scholar
  5. Betz, V. (1981) Zeolites from Iceland and the Faeroes: Mineral. Record 12, 5–26.Google Scholar
  6. Boles, J. R. (1977) Zeolites in low-grade metamorphic rocks: in Mineralogy and Geology of Natural Zeolites, F. A. Mumpton, ed., Short Course Notes 4, Mineral. Soc. Amer., Washington, D.C., 103–136.CrossRefGoogle Scholar
  7. Carpenter, A. B. (1971) Graphical analysis of zeolite mineral assemblages from the Bay of Fundy area, Nova Scotia: in Molecular Sieve Zeolites—I: Advances in Chemistry Series 101, E. M. Flanigen and L. B. Sand, eds., Amer. Chem. Soc, Washington, D.C., 328–332.CrossRefGoogle Scholar
  8. Cerny, P. (1965) Ionic substitutions in natural stilbite: N. Jb. Miner. Mh. 7, 198–208.Google Scholar
  9. Clark, T.E. (1964) Zeolites from the Kings Valley and Coffin Butte areas, Benton County, Oregon: M.S. thesis, Univ. Oregon, Eugene, Oregon, 99 pp.Google Scholar
  10. Coombs, D. S., Ellis, A. J., Fyfe, W. S., and Taylor, A. M. (1959) The zeolite facies, with comments on the interpretation of hydrothermal syntheses: Geochim. Cosmochim. Acta 17, 53–107.CrossRefGoogle Scholar
  11. Dunn, P. J., Rouse, R. C, and Norberg, J. A. (1978) Hy-droxyapophyllite, a new mineral, and a redefinition of the apophyllite group I. Description, occurrences, nomenclature: Amer. Mineral. 63, 196–199.Google Scholar
  12. Fenner, C. N. (1910) The Watchung basalt and the para-genesis of its zeolites and other secondary minerals: New York Acad. Sci. Ann. 20, 93–187.CrossRefGoogle Scholar
  13. Francheteau, J., Needham, D., Juteau, T., and Rangin, C. (1980) Naissance d’un Océan: Centre National pour l’Exploitation des Océans, Paris, 84 pp.Google Scholar
  14. Friedman, I. and O’Neil, J. R. (1977) Compilation of stable isotope fractionation factors of geochemical interest: U.S. Geol. Surv. Prof. Pap. 440KK, 12 pp.Google Scholar
  15. Grenne, T. and Roberts, D. (1983) Volcanostratigraphy and eruptive products of the Jonsvatn Greenstone Formation, central Norwegian Caledonides: Nor. Geol. Unders. 387, 21–37.Google Scholar
  16. Höller, H. and Wirsching, U. (1978) Experiments on the formation of zeolites by hydrothermal alteration of volcanic glasses: in Natural Zeolites, Occurrence, Properties, Use, L. B. Sand and F. A. Mumpton, eds., Pergamon Press, Elms-ford, New York, 329–336.Google Scholar
  17. Kostov, I. (1981) Zeolitization processes in trap volcanics: in Deccan Volcanism and Related Basalt Provinces in Other Parts of the World, K. V. Subbarao and R. N. Sukheswala, eds., Mem. 3, Geological Society of India, Bangalore, 428–433.Google Scholar
  18. Kristmannsdóttir, H. and Tomasson, J. (1978) Zeolitezones in geothermal areas in Iceland: in Natural Zeolites: Occurrence, Properties, Use, L. B. Sand and F. A. Mumpton, eds., Pergamon Press, Elmsford, New York, 277–284.Google Scholar
  19. Lawrence, J. R., Drever, J. I., Anderson, T. F., and Brueckner, H. K. (1979) Importance of alteration of volcanic material in the sediments of Deep Sea Drilling Site 323: chemistry, 8O/16O and 87Sr/86Sr: Geochim. Cosmochim. Acta 43, 573–588.CrossRefGoogle Scholar
  20. Liou, J. G. (1971) P-T stabilities of laumontite, wairakite, lawsonite, and related minerals in the system CaAl2Si2Os-SiO2-H2O: JPetrol, 12, 379–411.Google Scholar
  21. Lyttle, N. A. and Clarke, D. B. (1975) New analyses of Eocene basalt from the Olympic Peninsula, Washington: Geol. Soc. Amer. Bull. 86, 421–427.CrossRefGoogle Scholar
  22. McCulloh, T. H., Frizzell, V. A., Jr., Stewart, R. J., and Barnes, I. (1981) Precipitation of laumontite with quartz, the-nardite, and gypsum at Sespe Hot Springs, western Transverse Ranges, California: Clays & Clay Minerals 29, 353–364.CrossRefGoogle Scholar
  23. Melson, W. G., Thompson, G., and van Andel, Tj. H. (1968) Volcanism and metamorphism in the mid-Atlantic ridge, 22°N latitude: JGeophys. Res. 73, 5925–5941.CrossRefGoogle Scholar
  24. Miyashiro, A., Shido, F., and Ewing, M. (1971) Metamorphism on the Mid-Atlantic Ridge near 24° and 30°N: Phil. Trans. Roy. Soc. Lond. A, 268, 589–603.CrossRefGoogle Scholar
  25. Moore, J. G. (1975) Mechanism of formation of pillow lava: Amer. Scientist 63, 269–277.Google Scholar
  26. Motti, M. J. (1983) Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges: Geol. Soc. Amer. Bull. 94, 161–180.CrossRefGoogle Scholar
  27. Motti, M. J. and Holland H. D. (1978) Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater: Geochim. Cosmochim. Acta 42, 1103–1115.CrossRefGoogle Scholar
  28. Nashar, B. and Basden, R. (1965) Solubility of basalt under atmospheric conditions of temperature and pressure: Mineral. Mag. 35, 408–411.Google Scholar
  29. Nashar, B. and Davies, M. (1960) Secondary minerals of the Tertiary basalts, Barrington, New South Wales: Mineral. Mag. 32, 480–491.Google Scholar
  30. O’Neil, J. R., Clayton, R. N., and Mayeda, T. K. (1969) Oxygen isotope fractionation in divalent metal carbonates: JChem. Phys. 51, 5547–5558.Google Scholar
  31. Rye, R. O. and Ohmoto, H. (1974) Sulfur and carbon isotopes and ore genesis: a review: Econ. Geol. 69, 826–842.CrossRefGoogle Scholar
  32. Schaller, W. T. (1932) The crystal cavities ofthe New Jersey zeolite region: U.S. Geol. Surv. Bull. 832, 90 pp.Google Scholar
  33. Sheppard, R. A. and Gude, A. J., 3rd. (1970) Calcic siliceous chabazite from the John Day Formation, Grant County, Oregon: U.S. Geol. Surv. Prof Pap. 700-D, D176–D180.Google Scholar
  34. Snavely, P. D., Jr., MacLeod, N. S., and Wagner, H. C. (1968) Tholeiitic and alkalic basalts of the Eocene Siletz River Volcanics, Oregon Coast Range: Amer. J. Sci. 266, 454–481.CrossRefGoogle Scholar
  35. Snavely, P. D., Jr. and Wagner, H. C. (1963) Tertiary geologic history of western Oregon and Washington: Wash. Div. Mines Geol. Rept. Inv. 22, 25 pp.Google Scholar
  36. Snavely, P.D., Jr. and Wagner, H.C. (1968) Geologic sketch of northwestern Oregon: U.S. Geol. Surv. Bull. 1181-M, M1–M17.Google Scholar
  37. Staples, L. W. (1946) Origin of spheroidal clusters of anal-rime from Benton County, Oregon: Amer. Mineral. 31, 574–581.Google Scholar
  38. Sukheswala, R. N., Avasia, R. K., and Gangopadhyay, M. (1974) Zeolites and associated secondary minerals in the Deccan traps of western India: Mineral. Mag. 39, 658–671.CrossRefGoogle Scholar
  39. Taylor, H. P., Jr. (1968) The oxygen isotope geochemistry of igneous rocks: Contr. Mineral. Petrol. 19, 1–71.CrossRefGoogle Scholar
  40. Taylor, H. P., Jr. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition: Econ. Geol. 69, 843–883.CrossRefGoogle Scholar
  41. Walker, G. P. L. (1960a) Zeolite zones and dike distribution in relation to the structure of basalts in eastern Iceland: J. Geol. 68, 515–528.CrossRefGoogle Scholar
  42. Walker, G. P. L. (1960b) The amygdale minerals in the Tertiary lavas of Ireland. III. Regional distribution: Mineral. Mag. 32, 503–527.Google Scholar
  43. Waters, A. C. (1960) Determining direction of flow in basalts: Amer. J. Sci. 258-A, 350–366.Google Scholar
  44. Westercamp, D. (1981) Distribution and volcano-structural control ofzeolites and other amygdale minerals in the island of Martinique, F.W.I.: JVole. Geoth. Res. 11, 353–365.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1985

Authors and Affiliations

  • Terry E. C. Keith
    • 1
  • Lloyd W. Staples
    • 2
  1. 1.U.S. Geological SurveyMenlo ParkUSA
  2. 2.Department of GeologyUniversity of OregonEugeneUSA

Personalised recommendations