Advertisement

Clays and Clay Minerals

, Volume 33, Issue 2, pp 118–122 | Cite as

Co, Cu, Ni, and Ca Sorption by a Mixed Suspension of Smectite and Hydrous Manganese Dioxide

  • S. J. Traina
  • H. E. Doner
Article

Abstract

The sorption properties of Co, Cu, Ni, and Ca were studied in a mixed mineral suspension of synthetic MnO2 and Wyoming montmorillonite. The distribution of the sorbed cations between the two solid phases was measured by indirect chemical fractionation with acidified NH2OH-HCl and by direct X-ray spectroscopic analysis of mineral particles using electron microscopy. Electron microscope and NH2OH-HCl measurements of the quantity of Co sorbed on MnO2 agreed within 6%. Seventy-seven, 67, and 69% of the total Co, Cu, and Ni sorbed by the mixed mineral suspension was found on the manganese oxide. The opposite distribution was found for sorbed Ca with 28% on the manganese oxide and 72% on the montmorillonite particles. The observed differences in metal sorption by these minerals are related to the cation-sorption mechanisms of manganese oxide and montmorillonite.

Key Words

Adsorption Analytical transmission electron microscopy Birnessite Cation exchange Manganese oxide Montmorillonite Transition metals 

Резюме

Изучались сорбционные свойства Со, Сu, Nі, и Са в суспензиях смешанных минералов-синтетической МnО2 и вайомингского монтмориллонита. Распределение сорбираванных катионов между двумя твердыми фазами измерялось при помощи химического фракционирования с подкисленным NН2ОН-НСl и при помощи прямого рентгеновского спектрального анализа частиц минералов, используя электронную микроскопию. Результаты измерений количества Со, сорбированного на МnО2, при помощи электронного микроскопа и NН2ОН-НСl совпадали с точностью до 6%. Семьдесят семь, 67, и 69% общего количества Со, Сu, и Nі, сорбированных суспензией смешанных минералов, было обнаружено на двуокиси марганца. Противоположное распределение было обнаружено для сорбированного Са—28% на двуокиси марганца и 72% на монтмориллонитовых частицах. Наблюдаемые разницы в сорбции металлов этими минералами связаны с механизмами сорбции катионов двуокисью марганца и монтмориллонитом. [Е.G.]

Resümee

Es wurden die Sorptionseigenschaften von Co, Cu, Ni, und Ca in einer gemischten Mineralsuspension aus synthetischem MnO2 und Montmorillonit von Wyoming untersucht. Die Verteilung der sorbierten Kationen zwischen den zwei festen Phasen wurde durch indirekte chemische Fraktionierung mit angesäuertem NH2OH-HCl und dutch direkte röntgenspektroskopische Analyse mittels Elektronenmikroskopie der Mineralteilchen gemessen. Elektronenmikroskopische und NH2OH-HCl-Messungen der an MnO2 adsorbierten Co-Menge stimmten innerhalb von 6% überein. Es zeigte sich, daß am Manganoxid 77, 67, bzw. 69% der gesamten durch die gemischte Mineralsuspension adsorbierten Co-, Cu-, und Ni-Menge adsorbiert wurde. Die umgekehrte Verteilung wurde für das sorbierte Ca gefunden, wobei 28% am Manganoxid und 72% an den Montmorillonitteilchen adsorbiert waren. Die beobachteten Unterschiede bei der Metallsorption durch diese Minerale hängen mit dem Kationensorptionsmechanismus von Manganoxid und Montmorillonit zusammen. [U.W.]

Résumé

Les propriétés de sorption de Co, Cu, Ni, et Ca ont été étudiées dans une suspension de minéraux mélangés consistant de MnO2 synthétique et de montmorillonite du Wyoming. La distribution des cations sorbés entre les deux phases solides a été mesurée par fractionation chimique indirecte avec du NH2OH-HCl acidifié et par l’analyse spectroscopique directe des rayons-X des particules minérales utilisant la microscopie électronique. Les mesures obtenues du microscope électronique et de NH2OH-HCl de la quantité de Co sorbée sur MnO2 étaient à 6% pres. Soixante dix-sept, 67, et 69% du Co, Cu, et Ni total sorbé par la suspension de minéraux melangés ont été trouvés sur l’oxide de manganèse. Une distribution opposée a àté trouvée pour le Ca sorbé avec 28% sur l’oxide de manganèse et 72% sur les particules de montmorillonite. Les différences observées de sorption de métal de ces minéraux sont associées aux mécanismes de sorption de cations de l’oxide de manganése et de montmorillonite. [D.J.]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burns, R. G. and Bums, V. M. (1979) Manganese oxides: in Marine Minerals, Renews in Mineralogy 6, R. G. Bums, ed., Miner. Soc. Amer., Washington, D.C., 1–46.Google Scholar
  2. Chao, T. T. (1972) Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride: Soil Sci. Soc. Amer. Proc. 36, 764–768.CrossRefGoogle Scholar
  3. Kinniburgh, D. G. and Jackson, M. L. (1981) Cation sorption by hydrous metal oxides and clay: in Adsorption of Inorganics at Solid-Liquid Interfaces, M. A. Anderson and A. J. Rubin, ed., Ann Arbor Sci., Ann Arbor, Michigan 91–160.Google Scholar
  4. Loganathan, P. and Burau, R. G. (1973) Sorption of heavy metal ions by a hydrous manganese oxide: Geochim. Cosmochim. Acta 37, 1277–1293.CrossRefGoogle Scholar
  5. McLaren, R. G. and Crawford, D. V. (1973a) Studies on soil copper. I. The fractionation of copper in soils: J. Soil Sci. 24, 172–181.CrossRefGoogle Scholar
  6. McLaren, R. G. and Crawford, D. V. (1973b) Studies on soil copper. II. The specific adsorption of copper by soils: J Soil Sci. 24, 443–452.CrossRefGoogle Scholar
  7. McLaren, R. G., Swift, R. S., and Williams, J. G. (1981) The adsorption of copper by soil materials at low equilibrium solution concentrations: JSoil Sci. 32, 247–256.Google Scholar
  8. McKenzie, R. M. (1967) The sorption of cobalt by manganese minerals in soils: Aust. J. Soil Res. 5, 235–246.CrossRefGoogle Scholar
  9. McKenzie, R. M. (1971) The synthesis of birnessite, cryp-tomelane, and some other oxides and hydroxides of manganese: Mineral. Mag. 38, 493–502.CrossRefGoogle Scholar
  10. McKenzie, R. M. (1979) Proton release during adsorption of heavy metal ions by a hydrous manganese dioxide: Geochim. Cosmochim. Acta 43, 1855–1857.CrossRefGoogle Scholar
  11. McKenzie, R. M. (1981) The surface charge of manganese dioxides: Aust. J. Soil Res. 19, 41–50.CrossRefGoogle Scholar
  12. Murray, D. J., Healy, T. W., and Feurstenau, D. W. (1968) The adsorption of aqueous metal ions on colloidal hydrous manganese oxide: Adv. Chem. 79, 74–81.CrossRefGoogle Scholar
  13. Murray, J. W. (1974) The surface chemistry of hydrous manganese dioxide: J. Colloid Interface Sci. 46, 357–371.CrossRefGoogle Scholar
  14. Murray, J. W. (1975) The interaction of metal ions at the manganese dioxide-solution interface: Geochim. Cosmochim. Acta 39, 505–519.CrossRefGoogle Scholar
  15. Oscarson, D. W., Huang, P. M., Liaw, W. K., and Hammer, U. T. (1983) Kinetics of oxidation of arsenite by various manganese dioxides: Soil Sci. Soc. Amer. J. 47, 644–648.CrossRefGoogle Scholar
  16. Sposito, G., Holtzclaw, K. M., Johnston, C. T., and LeVesque, C. S. (1981) Thermodynamics of sodium-copper exchange on Wyoming bentonite at 29 8°K: Soil Sci. Soc. A mer. J. 45, 1079–1084.CrossRefGoogle Scholar
  17. Traina, S. J. and Doner, H. E., (1985) Heavy metal induced releases of Mn(II) from a hydrous manganese dioxide: Soil Sci. Soc. Amer. J. (in press).Google Scholar

Copyright information

© The Clay Minerals Society 1985

Authors and Affiliations

  • S. J. Traina
    • 1
  • H. E. Doner
    • 1
  1. 1.Department of Plant and Soil BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations