Advertisement

Clays and Clay Minerals

, Volume 32, Issue 1, pp 74–79 | Cite as

Complexes of Trimethylphosphine and Dimethylphenylphosphine with Co(II) and Ni(II) on Hectorite and on Zeolites X and Y

  • Robert A. Schoonheydt
  • Rudi Van Overloop
  • Mathieu Van Hove
  • Johan Verlinden
Article

Abstract

The gas-phase adsorption of trimethylphosphine onto hectorite, exchanged with Co(II) and Ni(II), gives trigonal complexes of the type [M(Ol)3(PMe3)]2+ (M = Co, Ni). Ten Dq values of PMe3 are 2.1 and 2.4 times larger than those of the structural oxygens or solvent molecules. The same complexes form between dimethylphenylphosphine and Ni(II) on hectorite and on synthetic zeolite Y. Co(II) forms pseudotetrahedral complexes with dimethylphenylphosphine ligands. These surface-immobilized transition-metal complexes interact strongly with NO and CH ≡ CH and to a lesser extent with CO and CH2=CH2, giving new types of complexes.

Key Words

Adsorption Cobalt Dimethylphenylphosphine Hectorite Nickel Trimethylphosphine Zeolite Y 

Резюме

Адсорбция газовой фазы трехметилфосфина на гекторите, обмененным Co(II) и Ni(II) дает тригональные комплексы типа [M(Ol)3(PMe3)]2+ (где M = Co, Ni). Десять величин Dq для PMe3 являются 2,1 и 2,4 раза больше, чем эти же величины для структурных атомов кислорода или молекул растворителя. Такие же комплексы формируются между двуметилфенилфосфином и Ni(II) на гекторите и на синтетическим цеолите У. Co(II) формирует псевдотетраэдрические комплексы с двуметилфенилфосфиновыми лигандами. Эти поверхностно связанные комплексы переходных металлов сильно взаимодействуют c NO и CH ≠ CH и слабее c CO и CH2 = CH2, формируя новые типы комплексов. [E.G.]

Resümee

Die Gasphasenadsorption von Trimethylphosphin an mit Co(II) und Ni(II) ausgetauschten Hektorit ergibt trigonale Komplexe vom Typ [M(Ol)3(PMe3)]2+ (M = Co, Ni). Die 10-Dq-Werte von PMe3 sind 2,1 und 2,4 mal größer als die der Struktur-Sauerstoffe oder der Lösungsmittelmoleküle. Die gleichen Komplexe bilden sich zwischen Dimethylphenylphosphin und Ni(II) an Hektorit und an synthetischem Zeolith Y. Co(II) bildet pseudotetraedrische Komplexe mit Dimethylphenylphosphin-Liganden. Diese Oberflächen-immobilisierten Übergangsmetallkomplexe zeigen starke Wechselwirkung mit MO und CH ≡ CH und geringere Wechselwirkung mit CO und CH2=CH2, wobei neue Komplextypen entstehen. [U.W.]

Résumé

L’adsorption du gaz trimethylphosphine sur hectorite, échangée par Ni(II) et Co(II), mène aux complexes trigonaux du type [M(Ol)3(PMe3)]2+ (M = Co, Ni). Les valeurs de 10 Dq du ligand PMe3 sont 2,1–2,4 fois plus larges que celles des oxygènes du réseau ou des molécules du solvent. Les mêmes complexes sont synthétisés par adsorption de diméthylphenylphosphine sur hectorite et sur la zéolithe synthétique Y, échangées par Ni(II). Le Co(II) forme des complexes pseudotétraédriques avec diméthyl-phenylphospine. Tous ces complexes de surface réagissent fortement avec NO et acétylène et faiblement avec CO et ethylene.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CRC (1971-1972) Handbook of Chemistry and Physics: 52nd ed., Chemical Rubber Co., Cleveland, Ohio, F173-F176.Google Scholar
  2. Griffith, J. S. (1971) The Theory of Transition Metal Ions: Cambridge University Press, Cambridge, 437–439.Google Scholar
  3. Henderson, W. A., Jr. and Streuli C. A. (1960) The basicity of phosphines: J. Amer. Chem. Soc. 82, 5791–5794.CrossRefGoogle Scholar
  4. Herman, R. G. (1979) Electron paramagnetic resonance study of a copper(II) trimethylphosphine oxide complex in Y zeolite: Inorganica Chimica Acta 34, 119–127.CrossRefGoogle Scholar
  5. König, E. (1971) The nephelauxetic effect. Calculation and accuracy of the interelectronic repulsion parameters. I. Cubic high-spin d2, d3, d7 and d8 systems: Structure and Bonding 9, 175–212.CrossRefGoogle Scholar
  6. Lever, A. B. P. (1968) Inorganic Electronic Spectroscopy: Elsevier, Amsterdam, 318–355.Google Scholar
  7. Mazzei, M., Marconi, W., and Riocci, R. (1980), Asymmetric hydrogenation of substituted acrylic acids by Rh′-aminophosphine chiral complex supported on mineral clays: J. Molecular Catalysis 9, 381–387.CrossRefGoogle Scholar
  8. Pinnavaia, T. J., Raythatha, R., Lee, J. G. S., Halloran, L. J., and Hoffman, J. F. (1979) Intercalation of catalytically active metal complexes in mica-type silicates. Rhodium hydrogénation catalysts: J. Amer. Chem. Soc. 101, 6893–6897.CrossRefGoogle Scholar
  9. Pinnavaia, T. J. and Welty, Ph. K. (1975) Catalytic hydrogenation of 1-hexene by rhodium complexes in the intra-crystal space of a swelling layer lattice silicate: J. Amer. Chem. Soc. 97, 3819–3820.CrossRefGoogle Scholar
  10. Pinnavaia, T. J., Welty, Ph. K., and Hoffman, J. F. (1975) Catalytic hydrogenation of unsaturated hydrocarbons by cationic rhodium complexes and rhodium metal intercalated in smectite: Proc. Int. Clay Conf, Mexico City, 1975, S. W. Bailey, ed., Applied Publishing Ltd., Wilmette, Illinois, 373–381.Google Scholar
  11. Quayle, W. H. and Pinnavaia, T. J. (1979) Utilization of a cationic ligand for the intercalation of catalytically active rhodium complexes in swelling, layer-lattice silicates: Inorg. Chem. 18, 2840–2847.CrossRefGoogle Scholar
  12. Raythatha, R. and Pinnavaia, T. J. (1981) Hydrogenation of 1,3-butadienes with a rhodium complex-layered silicate intercalation catalyst: J. Organometallic Chem. 218, 115–122.CrossRefGoogle Scholar
  13. Schoonheydt, R. A. (1981), Ultraviolet and visible light spectroscopy: in Advanced Techniques for Clay Mineral Analysis, J. J. Fripiat, ed., Elsevier, Amsterdam, 163–189.Google Scholar
  14. Schoonheydt, R. A., Van Wouwe, D., and Leeman, H. (1980a), Complexation and chemisorption of trimethylphosphine on Ni zeolites: J. Chem. Soc. Faraday Trans. I 76, 2519–2530.CrossRefGoogle Scholar
  15. Schoonheydt, R. A., Van Wouwe, D., and Van Hove, M. (1981), Spectroscopic and gravimetric study of the adsorption of trimethylphosphine on Co-zeolites: J. Colloid Interface Sci. 83, 279–288.CrossRefGoogle Scholar
  16. Schoonheydt, R. A., Van Wouwe, D., Van ove, M., Vansant, E. F., and Lunsford, J. H. (1980b) Identification of a low-spin Co2+-trimethylphosphine complex in zeolite Y: J. Chem. Soc. Chem. Comm. 33–34.Google Scholar

Copyright information

© The Clay Minerals Society 1984

Authors and Affiliations

  • Robert A. Schoonheydt
    • 1
  • Rudi Van Overloop
    • 1
  • Mathieu Van Hove
    • 1
  • Johan Verlinden
    • 1
  1. 1.Centrum voor Oppervlaktescheikunde en Colloïdale ScheikundeKatholieke Universiteit LeuvenLeuven (Heverlee)Belgium

Personalised recommendations