Advertisement

Clays and Clay Minerals

, Volume 31, Issue 4, pp 285–292 | Cite as

Mössbauer Effect Studies of Iron in Kaolin. I. Structural Iron

  • S. A. Fysh
  • J. D. Cashion
  • P. E. Clark
Article

Abstract

57Fe Mössbauer spectra of a cleaned Weipa, Australia, kaolin showed that a considerable fraction of the structural iron exhibits paramagnetic relaxation between 4°K and 300°K, the first time that this has been observed for ferric ions in a mineral. The sample also contained a very fine particle ferric oxide/oxyhydroxide phase, probably of secondary origin.

Key Words

Iron Kaolinite Mössbauer effect Paramagnetism Structural substitution 

Резюме

Мессбауеровские спектры 57Fе чистого каолинита Вайпа из Австралии показали, что значительная фракция структурного железа проявляет парамагнитную релаксацию между 4° и 300°К. Это наблюдалось первый раз для железных ионов в минерале. Образец содержал также очень мелкую фазу окиси/оксигидрата железа, вероятно, вторичного происхождения. [Е.О.]

Resümee

57Eisen-Mössbauerspektren eines gereinigten Kaolin von Weipa, Australien, zeigte, daß ein beachtlicher Teil des in der Struktur eingebauten Eisens paramagnetische Relaxation zwischen 4°K und 300°K zeigt. Dies wurde zum ersten Mal bei einem Fe3+-Ion in einem Mineral beobachtet. Die Probe entheilt außerdem eine sehr feinteilige Fe3+-Oxid/Oxihydroxid-Phase, die wahrscheinlich sekundär entstanden ist. [U.W.]

Résumé

Des spectres de Mössbauer 57Fe d’un kaolin nettoyé de Weipa, Australie ont montré qu’une fraction considérable du fer structural exhibait une relaxation paramagnétique entre 4°K et 300°K, la première fois que ceci a été observé pour des ions ferriques dans un minéral. L’échantillon contenait aussi une phase de particule ferrique oxide/oxyhydroxide très fine, probablement d’origine secondaire. [D.J.]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikin, T. L. H. and Cashion, J. D. (1983) Mössbauer analysis of iron phases in brown coal ash and slag: Fuel (in press).Google Scholar
  2. Angel, B. R. and Vincent, W. E. J. (1978) Electron spin resonance studies of iron oxides associated with the surface of kaolins: Clays & Clay Minerals 26, 263–272.Google Scholar
  3. Blume, M. and Tjon, J. A. (1968) Mössbauer spectra in a fluctuating environment: Phys. Rev. 165, 446–456.Google Scholar
  4. Bowen, L. H. (1979) Mössbauer spectroscopy of ferric oxides and hydroxides: Mass. Effect Ref. Data J. 2, 76–94.Google Scholar
  5. Coey, J. M. D. (1971) Noncollinear spin arrangement in ultrafine ferromagnetic crystallites: Phys. Rev. Lett. 2, 1140–1142.Google Scholar
  6. Coey, J. M. D. (1975) The clay minerals: use of the Mössbauer effect to characterise them and study their transformation: in Proc. Int. Conf. Mössbauer Sped., Cracow, Poland, A. Z. Hrynkiewicz and J. A. Sawicki, eds., Akad. Gornczo-Hutnicza, Cracow, 333–354.Google Scholar
  7. Cuttler, A. H. (1980) The behaviour of a synthetic 57Fe-doped kaolin: Mössbauer and electron paramagnetic resonance studies: Clay Miner. 15, 429–444.Google Scholar
  8. Ericsson, T., Wappling, R., and Punakivi, K. (1977) Mössbauer spectroscopy applied to clay and related minerals: Geol. Foeren. Stockholm Foerh. 99, 229–244.Google Scholar
  9. Fysh, S. A. and Clark, P. E. (1982a) Aluminous goethite—a Mössbauer study: Phys. Chem. Minerals 8, 180–187.Google Scholar
  10. Fysh, S. A. and Clark, P. E. (1982b) Aluminous hematite—a Mössbauer study: Phys. Chem. Minerals 8, 257–267.Google Scholar
  11. Fysh, S. A., Cashion, J. D., and Clark, P. E. (1983) Mössbauer effect studies of iron in kaolin. II. Surface iron. Clays & Clay Minerals 4, 293–298.Google Scholar
  12. Goodman, B. A. (1978) An investigation by Mössbauer and EPR spectroscopy of the possible presence of iron-rich impurity phases in some montmorillonites: Clay Miner. 13, 351–356.Google Scholar
  13. Hall, P. L. (1980) The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties: Clay Miner. 15, 321–335.Google Scholar
  14. Hogg, C. S., Maiden, P. J., and Meads, R. E. (1975) Identification of iron-containing impurities in natural kaolinites using the Mössbauer effect: Min. Mag. 40, 89–96.Google Scholar
  15. Janot, C., Gibert, H., and Tobias, C. (1973) Characterisation de kaolinites ferrifères par spectrométrie Mössbauer: Bull. Soc. Fr. Mineral. Cristallogr. 96, 281–291.Google Scholar
  16. Jefferson, D. A., Tricker, M. J., and Winterbottom, A. P. (1975) Electron microscopic and Mössbauer spectroscopic studies of iron-stained kaolinite minerals: Clays & Clay Minerals 23, 355–360.Google Scholar
  17. Jepson, W. B. and Rowse, J. B. (1975) The composition of kaolinite—an electron microscope microprobe study: Clays & Clay Minerals 23, 310–317.Google Scholar
  18. Komusinski, J., Stoch, L., and Dubiel, S. M. (1981) Application of electron paramagnetic resonance and Mössbauer spectroscopy in the investigation of kaolinite-group minerals: Clays & Clay Minerals 29, 23–30.Google Scholar
  19. Loughnan, F. C. and Bayliss, P. (1961) The mineralogy of the bauxite deposits near Weipa, Queensland: Amer. Mineral. 46, 209–217.Google Scholar
  20. Malden, P. J. and Meads, R. E. (1967) Substitution by iron in kaolinite: Nature 215, 844–846.Google Scholar
  21. Meads, R. E. and Maiden, P. J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions: Clay Miner. 10, 313–345.Google Scholar
  22. Mendelovici, E., Yariv, Sh., and Villalba R. (1979) Iron bearing kaolinite in Venezuelan laterites: I. Infrared spectroscopy and chemical dissolution evidence: Clay Miner. 14, 323–331.Google Scholar
  23. Mestdagh, M. M., Vielvoye, L., and Herbillon, A. J. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content: Clay Miner. 15, 1–13.Google Scholar
  24. Morrish, A. H. and Clark, P. E. (1974) Non-collinearity as a size effect in micropowders of γ-Fe2O3: Proceedings ICM-73, Moscow, Nauka, 180–185.Google Scholar
  25. Merup, S., Sontheimer, F., Ritter, G., and Zimmerman, R. (1978) Mössbauer effect studies of spin-spin relaxation in single crystals of Fe(NO3)3-9H2O at 4.2°K. J. Phys. Chem. Solids 39, 123–128.Google Scholar
  26. Rengasamy, P., Krishna Murti, G. S. R., and Sarma, V. A. K. (1975) Isomorphous substitution of iron for aluminum in some soil kaolinites: Clays & Clay Minerals 23, 211–214.Google Scholar
  27. Ross, C. A. M. and Longworth, G. (1980) Mössbauer study of the attentuation of iron in an irrigated greensand lysimeter: Clays & Clay Minerals 28, 43–49.Google Scholar
  28. Veith, J. A. and Jackson, M. L. (1974) Iron oxidation and reduction effects on structural hydroxyl and layer charge in aqueous suspensions of micaceous vermiculites: Clays & Clay Minerals 22, 345–353.Google Scholar
  29. Wickman, H. H., Klein, M. P., and Shirley, D. A. (1966) Paramagnetic hyperfine structure and relaxation effects in Mössbauer spectra: Fe57 in Ferrichrome A: Phys. Rev. 152, 345–357.Google Scholar
  30. Wickman, H. H. and Wertheim, G. K. (1968) in Chemical Applications of Mössbauer Spectroscopy, V. I. Goldanskii and R. H. Herber, eds., Academic Press, New York, Ch. 11, 548–621.Google Scholar
  31. Wignall, J. W. G. (1966) Mössbauer line broadening in trivalent iron compounds: J. Chem. Phys. 44, 2462–2467.Google Scholar

Copyright information

© The Clay Minerals Society 1983

Authors and Affiliations

  • S. A. Fysh
    • 1
    • 2
  • J. D. Cashion
    • 1
  • P. E. Clark
    • 1
    • 3
  1. 1.Department of PhysicsMonash University ClaytonVictoriaAustralia
  2. 2.Central Research LaboratoriesBHP Co. Ltd.WallsendAustralia
  3. 3.Department of Applied PhysicsCapricornia I. A.E.RockhamptonAustralia

Personalised recommendations