Advertisement

Clays and Clay Minerals

, Volume 31, Issue 3, pp 223–229 | Cite as

Hydration State of Cu2+ in Mixed Cu2+-Hexadecylpyridiniummontmorillonite by Electron Spin Resonance

  • K. Dyrek
  • Z. Kłapyta
  • Z. Sojka
Article

Abstract

Electron spin resonance (ESR) spectra of Cu2+-hexadecylpyridinium (HDP) montmorillonites were investigated as a function of HDP+ content and the hydration state of Cu2+ at relative humidities of p/p0 = 0.52-8 × 10-7 at 298°K. The symmetry of the Cu2+ ESR spectra and the intensity of the ESR signal increased upon dehydration of the complex. The HDP+ cation caused an increase in the hydration state of Cu2+ at a given p/p0 and an increase in the covalency of the Cu-O bond.

Key Words

Cation exchange Copper Electron spin resonance Hexadecylpyridinium Hydration Mont-morillonite 

Резюме

Спектры Си2+-гексадецилпиридиновых (ГДП) монтмориллонитов, полученные методом электронного спинового резонанса (ЭСР), исследовались как функции содержания ГДП+ и состояния гидратации Cu2+ при относительной влажности р/р0 = 0,52-8 х 10-7 и при температуре 298°К. Симметрия ЭСР лектров Cu2+ и интенсивность ЭСР сигнала увеличивались с дегидратацией комплекса. Катион ГДП+ вызывал увеличение состояния гидратации Cu2+ при данной величине р/р0 и увеличение ковалентности связи Cu-O. [E.G.]

Resümee

Die Elektronenspinresonanz (ESR)-Spektren von Cu2+-hexadecylpyridinium (HDP)-Montmorillo-niten wurden in Abhängigkeit vom HDP+-Gehalt und dem Hydratationszustand des Cu2+ bei relativen Feuchtigkeiten von p/p0 = 0,52-8 × 10-7 und einer Temperatur von 298°K untersucht. Die Symmetrie der ESR-Spektren von Cu2+ und die Intensität des ESR-Signals nahm mit der Dehydration des Komplexes zu. Das HDP+-Kation verursachte eine Zunahme des Hydratationszustandes von Cu2+ bei gegebenem p/p0 und eine Zunahme bei der Kovalenz der Cu-O-Bindung. [U.W.]

Résumé

Les spectres de résonance à spin d’électrons (ESR) de montmorillonites hexadécylpyridinium-Cu2+ (HDP) ont été investigués en fonction du contenu en HDP+ et de l’état d’hydration de Cu2+ à des humidités relatives de p/p0 = 0,52-8 × 10-7 à 298°K. La Symmétrie des spectres ESR du Cu2+ et l’intensité du signal ESR ont augmenté lors de la déshydration du complex. Le cation HDP+ a causé une augmentation de l’état d’hydration du Cu2+ à un p/p0 donné et une augmentation de la covalence du lien Cu-O. [D. J.]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. and Pryce, M. H. L. (1951) The theory of nuclear hyperfine structure of paramagnetic resonance spectra in the copper Tutton salts: Proc. Roy. Soc. (London) A 206, 164–172.Google Scholar
  2. Bassetti, V., Burlamacchi, L., and Martini, G. (1979) Use of paramagnetic probes for the study of liquid adsorbed on porous supports. Copper(II) in water solution: J. Amer. Chem. Soc. 101, 5471–5477.CrossRefGoogle Scholar
  3. Clementz, D. M., Mortland, M. M., and Pinnavaia, T. J. (1974) Properties of reduced charge montmorillonites: hydrated Cu(II) ions as a spectroscopic probe: Clays & Clay Minerals 22, 49–57.CrossRefGoogle Scholar
  4. Conesa, J. C. and Soria, J. (1978) Electron spin resonance of undetected copper(II) ions in Y zeolite: J. Phys. Chem. 82, 1847–1850.CrossRefGoogle Scholar
  5. Conesa, J. C. and Soria, J. (1979) Electron spin resonance of copper-exchanged Y zeolites. Part 1.—Behaviour of the cation during dehydration: J. Chem. Soc. Faraday Trans. I 75, 406–422.CrossRefGoogle Scholar
  6. Farmer, V. C. and Russell, J. D. (1971) Interlayer complexes in layer silicates: J. Chem. Soc. Faraday Trans. I 67, 2737–2749.CrossRefGoogle Scholar
  7. Hasono, H., Kawazoe, H., and Kanazawa, T. (1979) ESR and optical absorption of Cu2+ in Na2O-SiO2 glasses: J. Non-Cryst. Solids 33, 103–115.CrossRefGoogle Scholar
  8. Jacobs, P. A., de Wilde, W., Schoonheydt, R. A., Uytter-hoeven, J. B., and Beyer, H. (1976) Redox behaviour of transition metal ions in zeolites Part 3. Auto-reduction of cupric ions in Y zeolites: J. Chem. Soc. Faraday Trans. I 72, 1221–1230.CrossRefGoogle Scholar
  9. Kłapyta, Z. and Żyła, M. (1977) Modification of sorption properties of Cu-montmorillonite with hexadecylpyridinium cations: Miner. Polon. 8, 49–59.Google Scholar
  10. Mank, V. V. and Ovcharenko, F. D. (1978) Stereochemistry and dynamic of the hydrated copper(II) ions on the surface of complex silicates: Dokl. Akad. Nauk SSSR 238, 1384–1387 (Russian).Google Scholar
  11. McBride, M. B. (1976) Hydration structure of exchangeable Cu2+ in vermiculite and smectite: Clays & Clay Minerals 24, 211–212.CrossRefGoogle Scholar
  12. McBride, M. B. (1977) Adsorbed molecules on solvated layer silicates: surface mobility and orientation from ESR studies: Clays & Clay Minerals 25, 6–13.CrossRefGoogle Scholar
  13. McBride, M. B. (1979) Cationic spin probes on hectorite surfaces: demixing and mobility as a function of adsorption level: Clays & Clay Minerals 27, 97–104.CrossRefGoogle Scholar
  14. McBride, M. B. and Mortland, M. M. (1974) Copper(II) interactions with montmorillonite. Evidence from physical methods: Soil Sci. Soc. Amer. Proc. 38, 408–415.CrossRefGoogle Scholar
  15. McBride, M. B. and Mortland, M. M. (1975) Surface properties of mixed Cu(II)-tetraalkylammonium montmorillonites: Clay Miner. 10, 357–368.CrossRefGoogle Scholar
  16. McBride, M. B., Mortland, M. M., and Pinnavaia, T. J. (1975a) Exchange ion positions in smectite: effects on electron spin resonance of structural ion: Clays & Clay Minerals 23, 162–163.CrossRefGoogle Scholar
  17. McBride, M. B., Pinnavaia, T. J., and Mortland, M. M. (1975b) Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surfaces: J. Phys. Chem. 79, 2430–2435.CrossRefGoogle Scholar
  18. McBride, M. B., Pinnavaia, T. J., and Mortland, M. M. (1975c) Perturbation of structural Fe3+ in smectites by exchange ions: Clays & Clay Minerals 23, 103–107.CrossRefGoogle Scholar
  19. Mikheikin, I. D., Shvets, V. A., and Kazansky, V. B. (1970) Investigation of the sites of copper ion location in zeolites of type Y with the aid of optical and ESR spectra: Kinet. Katal. 11, 747–752 (Russian).Google Scholar
  20. Naccache, C. and Ben Taarit, Y. (1971) ESR study of cop-per(II) ions in Y zeolite. Effect of water, ammonia and pyridine absorption: Chem. Phys. Lett. 11, 11–15.CrossRefGoogle Scholar
  21. Neira, J. B., Macias, A. S., and Rios, E. G. (1977) Dehydration of Co-, Cu-, Mg- and K-montmorillonites: An. Quim. 73, 1415–1418 (Spanish).Google Scholar
  22. Nicula, A., Stamires, D., and Turkevich, J. (1965) Paramagnetic resonance absorption of copper ions in porous crystals: J. Chem. Phys. 42, 3684–3692.CrossRefGoogle Scholar
  23. Turkevich, J., Ono, Y., and Soria, J. (1972) Further electron spin resonance studies of Cu(II) in Linde Y zeolite: J. Catal. 25, 44–54.CrossRefGoogle Scholar
  24. Velghe, F., Schoonheydt, R. A., and Uytterhoeven, J. B. (1977) The coordination of hydrated Cu(II)- and Ni(II)-ions on montmorillonite surface: Clays & Clay Minerals 25, 375–380.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1983

Authors and Affiliations

  • K. Dyrek
    • 1
  • Z. Kłapyta
    • 2
  • Z. Sojka
    • 1
  1. 1.Institute of ChemistryJagjellonian UniversityCracowPoland
  2. 2.Institute of Geology and Mineral DepositsAcademy of Mining and MetallurgyCracowPoland

Personalised recommendations