Advertisement

Clays and Clay Minerals

, Volume 30, Issue 5, pp 375–382 | Cite as

Thin-Film Analysis of Clay Particles Using Energy Dispersive X-Ray Analysis

  • G. N. White
  • V. E. Berkheiser
  • F. N. Blanchard
  • C. T. Hallmark
Article

Abstract

A standardless method of energy dispersive X-ray fluorescence in conjunction with scanning electron microscopy was used to analyze selected areas of clay-size particles of talc, pyrophyllite, and kaolinite supported by a carbon planchet. Peak intensity ratios of fluorescing elements relative to silicon were converted directly to weight or mole ratios using conversion factors determined theoretically. The conversion factors depend upon particle thickness and mass adsorption coefficients of the sample for the elements analyzed. The effects of particle thickness become significant above ~0.1 μm. Without using particle thickness corrections, the mean molar ratios of metal to Si agreed to within 6.1,0.5, and 9.7% of the theoretical ratios for kaolinite, pyrophyllite, and talc, respectively.

Key Words

Chemical analysis Energy dispersive X-ray analysis Kaolinite Particle thickness Pyrophyllite Scanning electron microscopy Talc 

Резюме

Резюме—Использовался бесстандартный метод энергетическо-дисперсионной рентгеновской флуо-ресценции вместе сосканирующей электронной микроскопией для химического анализа выбран-ных мест частиц талька, пирофиллита, и каолинита о размере частиц глины, поддерживаемых угольной основой. Соотношения максимальной интенсивности флуоризуюших элементов по отно-шению к кремнию были превращены непосредственно в весовые или молярные соотношения, используя теоретически определенные факторы. Эти факторы зависят от толщины частиц и коеф-фициентов массовой адсорбции образца для анализированных элементов. Эффекты толщины частиц становятся значительными выше ~0,1 μим. Средние молярные соотношения металла к Si, без использования поправок на толщину частиц, согласовались с теоретическими соотношениями в пределах 6,1, 0,5, и 9,7% для каолинита, пирофиллита и талька, соответственно. [E.C.]

Resümee

Eine standardfreie Methode der energiedispersiven Röntgenfluoreszenz in Verbindung mit Rasterelektronenmikroskopie wurde verwendet, um ausgewählte Bereiche von Talk, Pyrophyllit, und Kaolinit in der Größe der Tonfraktion chemisch zu untersuchen, die auf Kohlenstoffträgern aufgebracht waren. Die Peakintensitätsverhältnisse der fluoreszierenden Elemente im Vergleich zu Silizium wurden direkt in Gewichts- oder Molverhältnisse umgerechnet, wozu theoretisch bestimmte Umrechnungsfaktoren verwendet wurden. Die Umrechnungsfaktoren hängen von der Teilchengröße und von den Masseadsorptionskoeffizienten der Probe für die analysierten Elemente ab. Die Auswirkungen der Teilchendicke wurde über etwa 0,1 μm von Bedeutung. Ohne Korrektur der Teilchendicke weicht das durchschnittliche Molverhältnis Metall/Si für Kaolinit, Pyrophyllit bzw. Talk um etwa 6,1%, 0,5% bzw. 9,7% von den theoretischen Verhältnissen ab. [U.W.]

Résumé

Une méthode sans standard de fluorescence de rayons-X dispersant l’énergie en conjonction avec la microscopie balayante à électrons a été utilisée pour analyser chimiquement des régions choisies de particules de talc, de pyrophyllite, et de kaolinite de taille de l’argile. Les plus hautes proportions d’intensité d’éléments fluorescents relativement à la silice ont été convertis directement en proportions de poids, ou molaires en utilisant des facteurs de conversions déterminés théoriquement. Les facteurs de conversion dépendent de l’épaisseur et des coefficients d’adsorption de masse de l’échantillon pour les éléments analysés. Les effets de l’épaisseur de la particule devenaient significatifs au dessus d’ ~0,l μm. Sans utiliser les corrections pour l’épaisseur de particule, les proportions molaires moyennes du métal à la silice s’accordaient à 6,1, 0,5, et 9,7% près avec les proportions théoriques pour la kaolinite, la pyrophyllite, et le talc, respectivement. [D.J.]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkheiser, V. E. and Monsees, M. B. (1982) Dispersion of clays on graphite supports for X-ray microprobe analysis: Soil Sci. Soc. Amer. J. 46 (in press).Google Scholar
  2. Brindley, G. W. and Wardle, R. (1970) Monoclinic and triclinic forms of pyrophyllite and pyrophyllite anhydride: Amer. Minerai. 55, 1259–1272.Google Scholar
  3. Cliff, G. and Lorimer, G. W. (1975) The quantitative analysis of thin specimens: J. Microsc. 103, 203–207.CrossRefGoogle Scholar
  4. Colby, J. W. (1968) Quantitative microprobe analysis of thin insulating films: Adv. X-Ray Anal. 11, 287–305.Google Scholar
  5. Duncomb, P. (1962) Enhanced X-ray emission from extinction contours in a single-crystal gold film: Phil. Mag. 7, 2101–2105.CrossRefGoogle Scholar
  6. Goldstein, J. I. and Colby, J. W. (1975) Special techniques in the X-ray analysis of samples: in Practical Scanning Electron Microscopy, J. I. Goldstein and H. Yakowitz, eds., Plenum Press, New York, 435–490.CrossRefGoogle Scholar
  7. Goldstein, J. I., Costley, J. L., Lorimer, G. W., and Reed, S. J. B. (1977) Quantitative X-ray analysis in the electron microscope: SEM 197. 1, 315–325.Google Scholar
  8. Hirsch, P. B., Howie, A., and Whelan, M. J. (1962) On the production of X-rays in thin metal films: Phil. Mag. 7, 1095–2100.Google Scholar
  9. König, R. (1976) Quantitative X-ray microanalysis of thin foils: in Electron Microscopy in Mineralogy, H. R. Wenk, ed., Springer-Verlag, New York, 526–536.CrossRefGoogle Scholar
  10. McCrary, H. J., Singman, L. V., Ziegler, L. H., Looney, L. D., Edmonds, C. M., and Harris, E. (1971) K-fluorescent X-ray relative intensity measurements: Phys. Rev. A4, 1745–1750.CrossRefGoogle Scholar
  11. Namae, Takao (1975) A method for quantitative analysis for thin specimens by energy dispersive spectrometer fitted to transmission electron microscope: J. Electron Microsc. 24, 1–6.Google Scholar
  12. Philibert, J. and Tixier, R. (1975) Electron probe microanalysis of transmission electron microscope specimens: in Physical Aspects of Electron Microscopy and Microbeam Analysis,. B. Siegel and D. R. Beaman, eds., Wiley, New York, 333–354.Google Scholar
  13. Reed, S. J. B. (1975) Electron Microprobe Analysis. Cambridge University Press, New York, 308–310.Google Scholar
  14. Slivinsky, V. W. and Ebert, P. J. (1972) Kß/K. X-ray transition-probability ratios for elements 18 « Z ss 39: Phys. Rev. A5, 1581–1586.CrossRefGoogle Scholar
  15. Stemple, I. S. and Brindley, G. W. (1960) Structural study of talc and talc-tremolite relations: J. Amer. Ceram. Soc. 43, 34–42.CrossRefGoogle Scholar
  16. Zaluzec, N. J. (1978) An analytical electron microscope study of the omega phase transformation in a zirconium-niobium alloy: Oak Ridge National Laboratory Report ORNL/TM6705, National Technical Information Service, Spring-field, Virginia, 31–141 pp.Google Scholar
  17. Zaluzec, N. J. (1979) Quantitative X-ray microanalysis: Instrumental considerations and applications to materials science: in Introduction to Analytical Electron Microscopy, J. J. Hren, J. I. Goldstein, and D. C. Joy, eds., Plenum Publishing Corp., New York, 121–167.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1982

Authors and Affiliations

  • G. N. White
    • 1
  • V. E. Berkheiser
    • 1
  • F. N. Blanchard
    • 2
  • C. T. Hallmark
    • 3
  1. 1.Soil Science DepartmentUniversity of FloridaGainesvilleUSA
  2. 2.Department of GeologyUniversity of FloridaGainesvilleUSA
  3. 3.Department of Soil and Crops ScienceTexas A&M UniversityCollege StationUSA

Personalised recommendations