Advertisement

Clays and Clay Minerals

, Volume 30, Issue 4, pp 318–320 | Cite as

Oxygen Isotope Study of Chromium-Bearing Kaolinite and Dickite from Teslić, Yugoslavia

  • Yuch-Ning Shieh
  • Zoran Maksimović
Note

Key Words

Chromium Dickite Hydrothermal Kaolinite Oxygen isotopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brindley, G. W. (1980) Quantitative X-ray mineral analysis of clays: Ch. 7, in Crystal Structures of Clay Minerals and their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, p. 411.Google Scholar
  2. Clayton, R. N., O’Neil, J. R., and Mayeda, T. (1972) Oxygen isotope exchange between quartz and water: J. Geophys. Res. 77, 3057–3067.Google Scholar
  3. Jackson, M. L. (1975) Soil Chemical Analysis: Advanced Course: 2nd ed., 10th printing. Published by the author, Madison, Wisconsin, p. 514.Google Scholar
  4. Kulla, J. B. and Anderson, T. F. (1978) Experimental oxygen isotope fractionation between kaolinite and water: U.S. Geol. Surv. Open-File Rept. 78-701, 234–235.Google Scholar
  5. Lawrence, J. R. and Taylor, H. P., Jr. (1972) Hydrogen and oxygen isotope systematics in weathering profiles: Geochim. Cosmochim. Acta 36, 1377–1393.Google Scholar
  6. Lombardi, G. and Sheppard, S. M. F. (1977) Petrographic and isotopic studies of the altered acid volcanics of the Tolfa-Cerite area, Italy: the genesis of the clays: Clay Miner. 12, 147–162.Google Scholar
  7. Maksimovic, Z. (1973) Nickel clay minerals in some laterites, bauxites and oolitic iron ores: in 6th Conference on Clay Mineralogy and Petrology, Czechoslovakia, 1971, J. Konta, ed., 119–134.Google Scholar
  8. Maksimovic, Z. and Crnkovic, B. (1968) Halloysite and ka-olinite formed through the alteration of ultramafic rocks: Trans. Intern. Geol. Congress, Prague 14, 95–105.Google Scholar
  9. Maksimovic, Z., White, J. L., and Logar, M. (1981) Chro-mium-bearing dickite and chromium-bearing kaolinite from Teslic, Yugoslavia: Clays & Clay Minerals 29, 213–218.Google Scholar
  10. Matsuhisa, Y., Goldsmith, J. R., and Clayton, R. N. (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water: Geochim. Cosmochim. Acta 43, 1131–1140.Google Scholar
  11. O’Neil, J. R., Adami, L. H., and Epstein, S. (1975) Revised value for the 18O fractionation between CO2 and water at 25°C: U.S. Geol. Surv. J. Research 3, 623–624.Google Scholar
  12. Savin, S. M. and Epstein, S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals: Geochim. Cosmochim. Acta 34, 25–42.Google Scholar
  13. Sheppard, S. M. F., Nielsen, R. L., and Taylor, H. P. (1969) Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits: Econ. Geol. 64, 755–777.Google Scholar
  14. Shieh, Y. N. and Suter, T. G. (1979) Formation conditions of authigenic kaolinite and calcite in coals by stable isotope determinations: Clays & Clay Minerals 27, 154–156.Google Scholar
  15. Taylor, H. P., Jr. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition: Econ. Geol. 69, 843–883.Google Scholar

Copyright information

© The Clay Minerals Society 1982

Authors and Affiliations

  • Yuch-Ning Shieh
    • 1
  • Zoran Maksimović
    • 2
  1. 1.Department of GeosciencesPurdue UniversityWest LafayetteUSA
  2. 2.Faculty of Mining and GeologyUniversity of BelgradeBelgradeYugoslavia

Personalised recommendations