Advertisement

Clays and Clay Minerals

, Volume 30, Issue 4, pp 264–274 | Cite as

Berthierine and Chamosite in Coal Measures of Japan

  • Azuma Iljima
  • Ryo Matsumoto
Article

Abstract

Berthierine (formerly chamosite) occurs as concretions, lenses, and bands in carbonaceous, kaolinitic shale of freshwater coal-swamp deposits in Paleogene and Upper Triassic coal measures of Japan. Textural relations in thin sections of the Triassic berthierine rocks and a siderite-kaolinite-berthierine-quartz assemblage in Paleogene rocks indicate that the berthierine formed by reaction of siderite with kaolinite. The transformation of siderite and kaolinite to berthierine and quartz occurs progressively under reducing conditions between 65° and 150°C and at burial depths of 2–5 km. Utatsu berthierine is an aluminous, low-Mg variety as compared with berthierine pellets in modern marine and estuarine sediments and in ancient marine ironstones. Fe is the dominant octahedral cation with Fe2+ ≫ Fe3+. The composition of the berthierine varies between different morphological types. Utatsu berthierine transformed to ferrous chamosite when kaolinite in the host shale changed to pyrophyllite. These transformations are estimated to have occurred at ∼160°C and at a burial depth of ∼3 km.

Key Words

Berthierine Chamosite Coal Genesis Iron Siderite 

Резюме

Бертиерин (раньше хамосит) выступает в виде конкреций, ленсов, и полос в карбонатных, каолинитовых сланцах в свежеводных, углеболотных осадах в палеогенных и выше-триасовых каменноугольных пластах Японии. Текстурные отношения в тонких секциях триасовых бертие-риновых пород и скоплений сидерит-каолинит-бертиерин-кварц в палеогенных породах указывают на то, что бертиерин образовался путем реакции сидерита и каолинита. Трансформирование сидерита и кординита в бертиерин и кварц выступает прогрессивно в восстановленных условиях между 65° и 150°С на глубине погребения 2 до 5 км. Бертиерин из Ютатсу является алюминиевого, низко-Мg сорта по сравнению с бертиериновыми таблетками в современных морских и эстуарных осадках и в древних морских железных рудах. Ре является основным октаэдрическим катионом с Ре2+ ≫ Ре3+. Состав бертиерина различен для разных морфологических типов. Бертиерин из Ютатсу преобразовался в железистый хомосит, когда каолинит в материнском сланце изменился в пирофиллит. Оценивается, что эти преобразования осуществились при температуре 160°С и на глубине погребения порядка 3 км. [Е.С.]

Resümee

Berthierit (früher Chamosit) tritt als Konkretionen, Linsen, und Bänder in kohligem, Kaolinithaltigem Schieferton von Süßwasser-Kohlelagerstätten in paläogenen und obertriassischen Kohleschichten von Japan auf. Die Gefügemerkmale in Dünnschliffen der triassischen Berthierit-Gesteine und eine Siderit-Kaolinit-Berthierit-Quarz-Vergesellschaftung in paläogenen Gesteinen deuten darauf bin, daß sich der Berthierit durch die Reaktion von Siderit mit Kaolinit bildete. Die Umwandlung von Siderit und Kaolinit in Berthierit und Quarz findet in zunehmendem Maße unter reduzierenden Bedingungen zwischen 65° und 150°C und bei einer Überlagerung von 2–5 km statt. Der Berthierit von Utatsu ist verglichen mit Berthierit-Pellets in jungen marinen und ästuarinen Sedimenten und alten marinen Eisensteinen eine Al-haltige Varietät mit wenig Mg. In oktaedrischer Koordination tritt vor allem Fe auf, wobei Fe2+ ≫ Fe3+. Die Berthieritzusammensetzung schwankt zwischen den einzelnen morphologischen Typen. Der Utatsu Berthierit wandelte sich in Fe-haltigen Chamosit um, wenn sich der Kaolinit im Muttergestein in Pyrophyllit umwandelte. Es wird angenommen, daß diese Umwandlungen bei ∼160°C und bei einer Überlagerung von ∼3 km stattfanden. [U.W.]

Résumé

La benthiérine (autrefois la chamosite) est trouvée en concrétions, en formes lenticulaires, et en bandes dans du shale kaolinitique de dépôts de charbon-marécage d’eau douce dans des mesures de charbon d’âge paléogène et haut triassique du Japon. Des relations texturales dans des sections minces des roches benthiérine triassiques et un assemblage benthiérine-kaolinite-quartz dans les roches paléogènes indiquent que la benthiérine a étè formée par la réaction de sidérite avec la kaolinite. La transformation de sidérite et de kaolinite en benthiérine et quartz se passe progressivement sous des conditions de réduction entre 65° et 150°C et à des profondeurs d’ensevelissement de 2–5 km. La benthiérine Utatsu est une variété alumineuse, à bas Mg comparée aux boulettes de benthiérine dans des sédiments marins et estuarins modernes et dans d’anciennes roches ferreuses marines. Fe est le cation octaèdral dominant avec Fe2+ ≫ Fe3+. La composition de la benthiérine varie entre differents types morphologiques. La benthiérine Utatsu s’est transformée en chamosite ferreuse lorsque la kaolinite dans le shale hôte s’est changée en pyrophylite. On estime que ces transformations se sont passées à 160°C et à une profondeur d’ensevelissement de ∼3 km. [D.J.]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldinger, H. (1965) Über den Einfluss von Meeresspigel-schwankungen auf Flachwassersedimente in Sehwabischen Jura: Tschermarks Mineral. Petrog. Mitt. 10, 61–68.Google Scholar
  2. Alling, H. L. (1947) Diagenesis of the Clinton hematite ores of New York: Geol. Soc. Amer. Bull. 58, 991–1018.Google Scholar
  3. Bayliss. P. (1975) Nomenclature of the trioctahedral chlorites: Can. Mineral. 13, 178–180.Google Scholar
  4. Bence, A. E. and Albee, A. L. (1968) Empirical correction factors for the electron microanalysis of silicates and oxides: J. Geol. 76, 382–403.Google Scholar
  5. Bostick, N. H., Cashman, S. M., McGulloh, T. H., and Wad-dall, C. T. (1978) Gradients of vitrinite reflectance and present temperature in the Los Angeles and Ventura Basins, California: A Symposium in Geochemistry: Low Température Metamorphism of Kerogen and Clay Minerals, D. F. Oltz, ed., Pacific Section S.E.P.M., Los Angeles, 65–96.Google Scholar
  6. Brindley, G. W. (1951) The crystal structure of some cham-osite minerals: Mineral. Mag. 29, 502–525.Google Scholar
  7. Brindley, G. W. and Youell, R. F. (1953) Ferrous chamosite and ferric chamosite: Mineral. Mag. 30, 57–70.Google Scholar
  8. Castano, J. R. and Sparks, D. M. (1974) Interpretation of vitrinite reflectance measurements in sedimentary rocks and determination of burial history using vitrinite reflectance and authigenic minerals: Geol. Soc. Amer. Spec. Pap. 153, 31–52.Google Scholar
  9. Deer, W. A., Howie, R. A., and Zussman, J. (1962) Rock Forming Minerals, 3. Sheet Silicates, Wiley, New York, 270 pp.Google Scholar
  10. Deudon, M. (1955) La chamosite orthorhombique du minéral de Sante-Barbe, Conche Grise: Bull. Soc. Fr. Minéral. Cris-tallogr. 78, 474–480.Google Scholar
  11. Drennan, J. A. (1963) An unusual occurrence of chamosite: Clay Miner. 5, 382–391.Google Scholar
  12. Frey, M. (1970) The step from diagenesis to metamorphism in pelitic rocks during alpine orogenesis: Sedimentology 15, 261–279.Google Scholar
  13. Frey, M. (1978) Progressive low-grade metamorphism of a black shale formation, central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages: J. Petrology 19, 95–135.Google Scholar
  14. von Gaertner, H. R. and Schellmann, W. (1965) Recente Sed-imente in Kuestenbereich des Halbinsel Kaloum, Guinea: Min. Petr. Mitt. 10, 349–367.Google Scholar
  15. Giresse, P. and Odin, G. S. (1973) Nature minéralogique et origine des glaucomes du plateau continental du Gabon et du Congo: Sedimentology 20, 457–488.Google Scholar
  16. Greensmith, J. T. (1978) Petrology of the Sedimentary Rocks, 6th ed., George Allen & Unwin, London, 241 pp.Google Scholar
  17. Hayashi, H. (1980) Pyrophyllite shales from South Africa: Earth Resource Inst. Akita Univ. Rep. 45, 110–123.Google Scholar
  18. Henmi, K. and Matsuda, T. (1975) The equilibrium boundaries between kaolinite and pyrophyllite: Contr. Clay Mineral., T. Sudo, ed., Taikan-Kinenkai, Tokyo, 151–156.Google Scholar
  19. Hogarth, D. D. (1972) The Evans-Lou pegmatite, Quebec: a unique yttrium-niobium-bismuth-vanadium mineral assemblage: Mineral. Record 3, 69–77.Google Scholar
  20. Hosterman, J. W., Wood, G. H., Jr., and Bergin, M. J. (1970) Mineralogy of underclays in the Pennsylvania Anthracite region: U.S. Geol. Surv. Prof. Pap. 700-C, 89–97.Google Scholar
  21. Iijima, A. (1972) Latest Cretaceous-Early Tertiary lateritic profile in northern Kitakami Massif, Northern Honshu, Japan: J. Fac. Sci. Univ. Tokyo, Sec. II, 18, 325–370.Google Scholar
  22. Iijima, A. (1977) Occurrence of pyrophyllite from Mesozoic strata in Kitakami Massif: J. Geol. Soc. Japan 83, 244–246.Google Scholar
  23. Iijima, A. (1980) Geology of natural zeolites and zeolitic rocks: Pure Appl. Chem. 52, 2115–2130.Google Scholar
  24. Iijima, A. and Matsumoto, R. (1979) Discovery of chamosite transformed from siderite: Abstract 86th Ann. Meeting, Geol. Soc. Japan, p. 193.Google Scholar
  25. James, H. L. (1966) Chemistry of the iron-rich sedimentary rocks: U.S. Geol. Surv. Prof. Pap. 440-W, 60 pp.Google Scholar
  26. Matsumoto, R. (1978) Occurrence and origin of authigenic CaFeMg carbonates and carbonate rocks in the Paleogene coalfield regions in Japan: J. Fac. Sci. Univ. Tokyo, Sec. II, 19, 335–367.Google Scholar
  27. Matsumoto, R. and Iijima, A. (1981) Origin and diagenetic evolution of CaMgFe carbonates in some coalfields of Japan: Sedimentology 28, 239–259.Google Scholar
  28. Nelson, B. W. and Roy, R. (1958) Synthesis of the chlorites and their structural and chemical constitution: Amer. Mineral, 43, 707–725.Google Scholar
  29. Porrenga, D. H. (1965) Chamosite in Recent sediments of the Niger and Orinoco Deltas: Geol. Mignbouw 44, 400–403.Google Scholar
  30. Porrenga, D. H. (1966) Clay minerals in Recent sediments of the Niger Delta: in Clays and Clay Minerals, Proc. 14th Natl. Conf, Berkeley, California, 1965, S. W. Bailey, ed., Pergamon Press, New York, 221–233.Google Scholar
  31. Porrenga, D. H. (1967) Glauconite and chamosite as depth indicators in marine environment: Mar. Geol. 5, 495–501.Google Scholar
  32. Rohrlich, V., Price, N. B., and Calvert, S. E. (1969) Chamosite in recent sediments of Loch Etive, Scotland: J. Sediment. Petrol. 39, 624–631.Google Scholar
  33. Ruotsala, A. P., Pfluger, C. E., and Garnett, M. (1964) Iron-rich serpentine and chamosite from Ely, Minnesota: Amer. Mineral. 49, 993–1001.Google Scholar
  34. Schellmann, W. (1966) Secondary formation of chamosite from goethite: Z. Erzbergbau Metallhüttenwes. 19, 302–305.Google Scholar
  35. Schoen, R. (1964) Ciay minerals of the Silurian Clinton iron-stones, New York State: J. Sediment. Petrol. 34, 855–863.Google Scholar
  36. Shimoyama, T. and Iijima, A. (1978) Influence of temperature on coalification of Tertiary coal in Japan: Geol. Soc. Japan Mem. 15, 205–222.Google Scholar
  37. Shirozu, H. (1958) X-ray powder patterns and cell dimensions of some chlorites in Japan, with a note on their interference colors: Mineral. J. Japan 2, 209–223.Google Scholar
  38. Tanai, T., Iijima, A., and Agatsuma, T. (1978) Late Creta-ceous-Paleogene stratigraphy in the environs of the Iwate clay mine, northern Kitakami Massif, Northeast Honshu: J. Geol. Soc. Japan 84, 459–473.Google Scholar
  39. Taylor, J. H. (1949) Petrology of the Northampton Sand Iron-stone Formation: Great Britain Geol. Survey Mem., 111 pp.Google Scholar
  40. Velde, B. (1977) Clays and Clay Minerals in Natural and Synthetic Systems: Elsevier, Amsterdam, 218 pp.Google Scholar
  41. Weaver, C. E. and Pollard, L. D. (1973) The Chemistry of Clay Minerals: Elsevier, Amsterdam, 213 pp.Google Scholar
  42. Youell, R. F. (1958) Isomorphous replacement in the kaolin group of minerals: Nature 181, 557–558.Google Scholar

Copyright information

© The Clay Minerals Society 1982

Authors and Affiliations

  • Azuma Iljima
    • 1
  • Ryo Matsumoto
    • 1
  1. 1.Geological Institute, Faculty of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations