Clays and Clay Minerals

, Volume 28, Issue 2, pp 119–124 | Cite as

Adsorbed Cr(III) on Chlorite, Illite, and Kaolinite: An X-Ray Photoelectron Spectroscopic Study

  • M. H. Koppelman
  • A. B. Emerson
  • J. G. Dillard


The adsorption of Cr(IH) was studied at pH 1, 2, 3, 4, 6, 8, and 10 on chlorite and kaolinite and at pH 1, 2, 3, and 6 on illite. The amount of chromium adsorbed on chlorite varied from 3.1 × 10–5 mole/ g at pH 1 to 16.6 × 10–5 mole/g at pH 4, and on illite from 4.9 × 10–5 mole/g to 9.2 × 10–5 mole/g at pH 1 and 3, respectively. Kaolinite adsorbed 3.7 × 10–5 mole Cr/g at pH 1, 2, and 3 and 5.5 × 10–5 mole Cr/g at pH 4. Measurements of the Cr 2p core-level binding energies indicate that chromium is probably adsorbed as a Cr(III) aqua ion at pH values below 4. The binding energies for the Cr 2p level for samples prepared above pH 4 compare favorably with the value determined for chromium hydroxide and lead to the conclusion that the chromium species present at pH 6, 8, and 10 is chromium hydroxide.


Изучалась адсорбция Сг(Ш) хлоритом и каолинитом при рН 1, 2, 3, 4, 6, 8, и 10 и иллитом при рН 1, 2, 3, и 6. Количество хрома, адсорбированного хлоритом, изменяется от 3.1 × 10} моль/г при рН 1 до 16,6× 10} моль/г при рН 4, и иллитом от 4,9× 10} моль/г ло× 10} моль/г при рН 1 и 3 соответственно. Каолинит адсорбировал 3,7× 10−5 моль Сг/г при рН 1, 2, и 3 и 5,5× 10−5 моль Сг/г при рН 4. Измерения связывающих энергий Сг на ядерном уровне 2р показывают, что хром, вероятно адсорбируется как водный ион Сг(Ш) при величинах рН меныше 4. Связывающие энергии для Сг на уровне 2р для образцов, приготовленных при рН выше 4, сильнее по сравнению с величиной, найденной для гидроокиси хрома, из чего следует, что соединение хрома, присутствующее при рН 6, 8, и 10 является гидроокисью. [N. R.]

Key Words

Adsorption Binding energy Chlorite Chromium Iilite Kaolinite XPS 


Die Adsorption von Cr(III) an Chlorit und Kaolinit wurde bei den pH-Werten 1, 2, 3, 4, 6, 8, und 10 untersucht, die an Illit bei pH 1, 2, 3, und 6. Die Chrommenge, die an Chlorit adsorbiert wurde, variierte von 3,1 × 10–5 Mol/g bei pH 1 bis 16,6 × 10–5 Mol/g bei pH 4. Die an Illit adsorbierte Menge variierte von 4,9 × 10–5 Mol/g bis 9,2 × 10–5 Mol/g bei pH 1 bzw. 3. Kaolinit adsorbierte 3,7 × 10–5 Mol Cr/g bei pH 1,2, und 3 und 5,5 × 10–5 Mol Cr/g bei pH 4. Messungen der Cr 2p Kernlevel-Bindungsenergien deuten darauf hin, daß das Chrom bei pH-Werten unter 4 wahrscheinlich als ein Cr(III)aqua-ion adsorbiert ist. Die Bindungsenergien für den Cr 2p-Level bei Proben, die oberhalb pH 4 präpariert wurden, stimmen sehr gut mit dem Wert überein, der für Chromhydroxid bestimmt wurde, und führen zu dem Schluß, daß das Chrom bei den pH-Werten 6, 8, und 10 in Form von Chromhydroxid vorliegt. [U.W.]


L’adsorption de Cr(III) sur la chlorite et la kaolinite a été étudiée aux pH 1, 2, 3, 4, 6, 8, et 10, et sur l’illite aux pH 1, 2, 3, et 6. La quantité de chromium adsorbée sur la chlorite a varié de 3,1 × 10–5 mole/g à un pH 1 à 16,6 × 10–5 mole/g à pH 4, et sur l’illite, de 4,9 × 10–5 mole/g à 9,2 × 10–5 mole/g aux pH 1 et 3, respectivement. La kaolinite a adsorbé 3,7 × 10–5 mole Cr/g aux pH 1, 2, et 3, et 5,5 × 10–5 mole Cr/g à pH 4. Des mesures des énergies de liens du niveau de noyeu 2p de Cr indiquent que le chromium est probablement adsorbé en tant qu’ion aqua Cr(III) à des pH plus bas que 4. Les énergies de liens pour le Cr de niveau 2p pour des échantillons préparés à un pH plus haut que 4 peuvent être favorablement comparées à la valeur déterminée pour l’hydroxide de chromium, et mènent à conclure que l’espèce de chromium présente aux pH 6, 8, et 10 est l’hydroxide de chromium. [D.J.]


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, G. C., Curtis, M. T., Hooper, A. J., and Tucker, P. M. (1973) X-ray photoelectron spectroscopy of chromium-oxygen systems: J. Chem. Soc. Dalton Trans., 1675–1683.Google Scholar
  2. Allen, G. C. and Tucker, P. M. (1976) Multiplet splitting of X-ray photoelectron lines of chromium complexes. The effect of covalency on the 2p core level spin-orbit separation: Inorg. Chim. Acta 16, 41–45.CrossRefGoogle Scholar
  3. Alvarez, R., Fadley, C. S., Silva, J. A., and Uehara, G. (1976) A study of silicate adsorption on gibbsite (Al(OH)3) by X-ray photoelectron spectroscopy (XPS): Soil Sci. Soc. Amer. J. 40, 615–617.CrossRefGoogle Scholar
  4. Baes, C. F. and Mesmer, R. E. (1976) Hydrolysis of Cations: Wiley, New York, 211–219.Google Scholar
  5. Bartlett, R. J. and Kimble, J. M. (1976a) Behavior of chromium in soils. I. Trivalent forms: J. Environ. Qual. 5, 379–383.CrossRefGoogle Scholar
  6. Bartlett, R. J. and Kimble, J. M. (1976b) Behavior of chromium in soils. II. Hexavalent forms: J. Environ. Qual. 5, 383–386.CrossRefGoogle Scholar
  7. Bartlett, R. and James, B. (1979) Behavior of chromium in soils: III. Oxidation. J. Environ. Qual. 8, 31–25.CrossRefGoogle Scholar
  8. Bish, D. L. (1977) A spectroscopic and X-ray study of the coordination of Cr3+ ions in chlorite: Amer. Mineral. 62, 385–389.Google Scholar
  9. Cary, E. E., Allaway, W. H., and Olson, O. E. (1977a) Control of chromium concentrations in food plants. I. Absorption and translocation of chromium by plants: J. Agric. Food Chem. 25, 300–304.CrossRefGoogle Scholar
  10. Cary, E. E., Allaway, W. H., and Olson, O. E. (1977b) Control of chromium concentrations in food plants. II. Chemistry of chromium and its availability to plants: /. Agric. Food Chem. 25, 305–309.CrossRefGoogle Scholar
  11. Cimino, A., DeAngelis, B. A., Luchetti, A., and Minelli, G. (1976) The characterization of CrOx/SiO2 catalysts by photoelectron spectroscopy (XPS), X-ray and optical measurements: J. Catal. 45, 316–325.CrossRefGoogle Scholar
  12. Cornet, D. and Burwell, R. L. (1968) Chromium compounds on silica gel: J. Amer. Chem. Soc. 90, 2489–2494.CrossRefGoogle Scholar
  13. Coughlan, B., McCann, W. A., and Carroll, W. M. (1977) An electron spectroscopic study of chromium complexes in zeolites L and mordentite: Chem. Ind. (London), 358–360.Google Scholar
  14. DeAngelis, B. A. (1976) On the surface reduction of some chromium compounds during X-ray photoelectron spectroscopy: J. Electron Spectrosc. Relat. Phenom. 9, 91–84.Google Scholar
  15. Deer, W. A., Howie, R. A., and Zussman, J. (1962) Rock-forming minerals: Longman Press, London, p. 24.Google Scholar
  16. Dillard, J. G. and Taylor, L. T. (1974) X-ray photoelectron spectroscopic study of schiff base metal complexes: J. Electron Spectrosc. Relat. Phenom. 3, 455–460.CrossRefGoogle Scholar
  17. Dugger, D. L., Stanton, J. H., Irby, B. N., McConnell, B. L., Cummings, W. W., and Maatman, R. W. (1964) The exchange of twenty metal ions with the weakly acidic silanol groups of silica gel: J. Phys. Chem. 68, 757–760.CrossRefGoogle Scholar
  18. Fanning, K. A. and Pilson, M. E. Q. (1973) On the spectro-photometric determination of dissolved silica in natural waters: Anal. Chem. 45, 136–140.CrossRefGoogle Scholar
  19. James, R. O. and Healy, T. W. (1972a) Adsorption of hydro-lyzable metal ions at the oxide-water interface. I. Co(II) adsorption on Si02 and TiO2 as model systems: J. Colloid Interface Sci. 40, 42–52.CrossRefGoogle Scholar
  20. James, R. O. and Healy, T. W. (1972b) Adsorption of hydro-lyzable metal ions at the oxide-water interface. III. A thermodynamic model of adsorption: J. Colloid Interface Sci. 40, 65–81.CrossRefGoogle Scholar
  21. Koppelman, M. H. and Dillard, J. G. (1975) An ESCA study of sorbed metal ions on clay minerals: ACS Symp. Ser. 18, 186–201.CrossRefGoogle Scholar
  22. Koppelman, M. H. and Dillard, J. G. (1977) A Study of the adsorption of Ni(II) and Cu(II) by clay minerals: Clays & Clay Minerals 25, 457–462.CrossRefGoogle Scholar
  23. Koppelman, M. H. and Dillard, J. G. (1978) An X-ray pho-toelectron spectroscopic (XPS) study of cobalt adsorbed on the clay mineral chlorite: J. Colloid Interface Sci. 66, 345–351.CrossRefGoogle Scholar
  24. Lu, J. C. S. and Chen, K. Y. (1977) Migration of trace metals in interfaces of seawater and polluted surficial sediments: Environ. Sci. Technol. 11, 174–182.CrossRefGoogle Scholar
  25. Riley, J. P. and Chester, R. (1971) Introduction to Marine Chemistry: Academic Press, London, p. 389.Google Scholar
  26. Scofield, J. H. (1976) Hartree-slater subshell photoionization gross sections at 1254 and 1487 eV: J. Electron Spectrosc. Relat. Phenom. 8, 129–137.CrossRefGoogle Scholar
  27. Seals, R. D., Alexander, R. W., Taylor, L. T., and Dillard, J. G. (1973) Core electron binding energy study of group lib—Vila compounds: Inorg. Chem. 12, 2485–2487CrossRefGoogle Scholar
  28. Sillen, L. G. and Martell, E. A. (1964) Stability constants of metal ion complexes: Chem. Soc. (London), Spec. Pubi. 17, 754 pp.Google Scholar
  29. Swartzen-Allen, S. L. and Matijevic, E. (1974) Surface and colloid chemistry of clays: Chem. Rev. 74, 385–400.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 1980

Authors and Affiliations

  • M. H. Koppelman
    • 1
  • A. B. Emerson
    • 1
  • J. G. Dillard
    • 1
  1. 1.Department of ChemistryVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations