Advertisement

Clays and Clay Minerals

, Volume 28, Issue 2, pp 111–118 | Cite as

Absorption of Infrared Radiation by D2O and HDO Mixed with Montmorillonite

  • J. Salle de Chou
  • P. F. Low
  • C. B. Roth
Article

Abstract

The frequency, v, for O-D stretching in D2O films between the superimposed layers of different micas and montmorillonites was measured at several film thicknesses and temperatures of 2° and 25°C by infrared spectroscopy. The molar absorptivity, ε, for O-D stretching in HDO films between the mont-morillonite layers was also measured at different film thicknesses and 25°C. It was found that v is related to mw/mm, the mass ratio of D2O to mica or montmorillonite, by the equation v = v0 exp β/(mwmm where v0 is the O-D stretching frequency in pure D2O and ß is a constant. Since mw/mm is proportional to a, the area under the absorption peak, mw/mm can be replaced by a in this equation. It was also found that ε decreased dramatically as the thickness of the water film between the montmorillonite layers decreased. These results were interpreted to mean that the structure of the interlayer water is perturbed by the inter-layer cations and/or silicate surfaces.

Key Words

Absorption Deuterium Infrared Molar absorptivity Montmorillonite Water 

Резюме

Инфракрасной спектроскопией замерялась частота v для растягивания О-D в пленках D2O между прилегающими слоями разных слюд и монтмориллонитов при нескольких толщинах пленки и температурах 2° и 25°С. Также замерялась молярная поглощаемость, ε, для растягивания О-Б в пленках НDO между слоями монтмориллонита при разных толщинах пленки и 25°С. Было найдено, что связь vc mw/mm отношением массы D2O к слюде или монтмориллониту, описывается уравнением v = v0 ехр β/( mw/mm) где v0= частота растягивания О-D в чистом D2O, а β = постоянная. Поскольку mw/mmпропорционально а, площади под пиком поглощения, вместо mw/mm в этом уравнении можно подставить а. Также было найдено, что ε резко понизилась, когда уменьшилась толщина пленки между слоями монтмориллонита. Эти результаты показывают, что структура межслойной воды искажается межслойными катионами и/или силикатными поверхностями. [N. R.]

Resümee

Die Frequenz, v, für die O-D-Streckung in D2O-Filmen zwischen den Schichten unterschiedlicher Glimmer und Montmorillonite wurde bei verschiedenen Filmdicken und bei Temperaturen von 2° und 25°C mittels Infrarot-Spektroskopie gemessen. Die molare Absorptivität, e, für die O-D-Streckung in HDO-Filmen zwischen den Montmorillonitschichten wurde ebenfalls bei unterschiedlichen Filmdicken, bei 25°C gemessen. Es zeigte sich, daß v mit mw/mm, dem Massenverhältnis von D2O zu Glimmer oder Montmorillonit, durch die Gleichung v = v° exp ß/(m/mm) zusammenhängt, wobei v0 die O-D-Streck-ungsfrequenz in reinem D2O und ß eine Konstante ist. Da mw/mm proportional zu a ist, der Fläche unter dem Absorptionspeak, kann mw/mm in dieser Gleichung durch a ersetzt werden. Weiters zeigte sich, daß e sehr stark zurückgeht, wenn die Dicke des Wasserfilms zwischen den Montmorillonitschichten abnimmt. Diese Ergebnisse wurden dahingehend interpretiert, daß die Struktur des Zwischenschichtwassers durch die Zwischenschichtkationen und/oder durch die Silikatoberflächen gestört wird. [U.W.]

Résumé

La fréquence, v, de retirement de films D2O entre les couches superposées de différents micas et de montmorillonites a été mesurée à plusieurs épaisseurs de films et à des températures de 2° et 25°C par spectroscopic infrarouge. L’absorptivité molaire, e, pour retirement 0-D dans les films HDO entre les couches de montmorillonite a aussi été mesurée à des épaisseurs de film différentes et à 25°C. On a trouvé que v est apparenté à mw/mm la proportion de masse de D2O au mica ou à la montmorillonite, par l’équation v = v° exp ß/(mw/mm) où v est la fréquence de retirement O-D dans D2O pur et où ß est une constante. Puisque mw/mm est proportionnel à a, la région sous le sommet d’adsorption, mw/mm peut être remplacé par a dans cette équation. On a aussi trouvé que ε a décru dramatiquement à mesure que l’épaisseur du film d’eau entre les couches de montmorillonite décroissait. On a interprété ces résultats comme signifiant que la structure de l’eau interfolaire est perturbée parles cations interfolaires et/ou par les surfaces silicées. [D.J.]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. M. and Low, P. F. (1958) The density of water adsorbed by lithium-, sodium-, and potassium-bentonite: Soil Sci. Soc. Amer. Proc. 22, 99–103.CrossRefGoogle Scholar
  2. Badger, R. M. (1934) A relation between internuclear distances and bond force constants: J. Chem. Phys. 1, 128–131.CrossRefGoogle Scholar
  3. Barclay, L. M. and Ottewill, R. H. (1970) The measurement of forces between colloidal particles: Spec. Disc. Faraday Soc. 1, 138–147.CrossRefGoogle Scholar
  4. Bayly, J. G., Kartha, V. B., and Stevens, W. H. (1963) The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 μm to 10 μm: Infrared Physics 3, 211–223.CrossRefGoogle Scholar
  5. Bellamy, L. J. and Pace, R. J. (1969) The significance of i.r. frequency shifts in relation to hydrogen bond strengths: Spectrochim. Acta 25A, 319–328.CrossRefGoogle Scholar
  6. Colthup, N. B., Daly, L. H., and Wiberley, S. E. (1975) Introduction to Infrared and Raman Spectroscopy: Academic Press, New York, 523 pp.Google Scholar
  7. Davidtz, J. C. and Low, P. F. (1970) Relation between crystal-lattice configuration and swelling of montmorillonites: Clays & Clay Minerals 18, 325–332.CrossRefGoogle Scholar
  8. Falk, M. and Ford, T. A. (1966) Infrared spectrum and structure of liquid water: Can. J. Chem. 44, 1699–1707.CrossRefGoogle Scholar
  9. Farmer, V. C. and Russell, J. D. (1971) Interlayer complexes in layer silicates. The structure of water in lamellar ionic solutions: Trans. Faraday Soc. 67, 2737–2749.CrossRefGoogle Scholar
  10. Fink, D. H., Rich, C. I., and Thomas, G. W. (1968) Determination of internal surface area, external water, and amount of montmorillonite in clay-water systems: Soil Sci. 105, 71–77.CrossRefGoogle Scholar
  11. Fripiat, J. J., Chaussidon, J., and Touillaux, R. (1960) Study of dehydration of montmorillonite and vermiculite by i.r. spectroscopy: J. Phys. Chem. 64, 1234–1241.CrossRefGoogle Scholar
  12. Gordy, W. (1946) A relation between bond force constants, bond orders, bond lengths, and the electronegativities of the bonded atoms: J. Chem. Phys. 14, 305–320.CrossRefGoogle Scholar
  13. Jorgenson, P. (1968) I. R. study of water adsorbed on Wyoming bentonite: Geol. F0ren. Stockholm Forh. 90, 213–220.CrossRefGoogle Scholar
  14. Kamb, B. (1968) Ice polymorphism and the structure of water: in Structural Chemistry and Molecular Biology, A. Rich and N. Davidson, eds., Freeman and Co., San Francisco, 507–542.Google Scholar
  15. Leonard, R. A. (1970) Infrared analysis of partially deuter-ated water adsorbed on clay: Soil Sci. Soc. Amer. Proc. 34, 339–343.CrossRefGoogle Scholar
  16. Lerot, L. and Low, P. F. (1976) Effect of swelling on the infrared absorption spectrum of montmorillonite: Clays & Clay Minerals 24, 191–199.CrossRefGoogle Scholar
  17. Low, P. F. (1976) Viscosity of interlayer water in montmorillonite: Soil Sci. Soc. Amer. J. 40, 500–505.CrossRefGoogle Scholar
  18. Low, P. F. (1979) Nature and properties of water in mont-morillonite-water systems: Soil Sci. Soc. Amer. J. 43, 651–658.CrossRefGoogle Scholar
  19. Low, P. F. and Anderson, D. M. (1958) The partial specific volume of water in bentonite suspensions: Soil Sci. Soc. Amer. Proc. 11, 22–24.CrossRefGoogle Scholar
  20. Low, P. F. and White, J. L. (1970) Hydrogen bonding and poly water in clay- water systems: Clays & Clay Minerals 18, 63–66.CrossRefGoogle Scholar
  21. Luck, W. A. P. (1973) Infrared studies of hydrogen bonding in pure liquids and solutions: in Water, a Comprehensive Treatise, Vol. 2, F. Franks, ed., Plenum Press, New York, 235–321.Google Scholar
  22. Nakamoto, K., Margoshes, M., and Rundle, R. E. (1955) Stretching frequencies as a function of distance in hydrogen bonds: J. Amer. Chem. Soc. 77, 6480–6486.CrossRefGoogle Scholar
  23. Norrish, K. (1954) The swelling of montmorillonite: Faraday Soc. Disc. 18, 120–134.CrossRefGoogle Scholar
  24. Odom, J. W. and Low, P. F. (1978) Relation between swelling, surface area and b dimension of Na-montmorillonites: Clays & Clay Minerals 26, 345–351.CrossRefGoogle Scholar
  25. Pimentel, G. C. and McClellan, A. L. (1960) The Hydrogen Bond: W. H. Freeman and Co., San Francisco. 475 pp.Google Scholar
  26. Ramsay, D. A. (1952) Intensities and shapes of infrared absorption bands of substances in the liquid phase. J. Amer. Chem. Soc. 74, 72–80.CrossRefGoogle Scholar
  27. Ravina, I. and Low, P. F. (1972) Relation between swelling, water properties and b-dimension in montmorillonite-water systems: Clays & Clay Minerals 20, 109–123.CrossRefGoogle Scholar
  28. Ravina, I. and Low, P. F. (1977) Change of b-dimension with swelling of montmorillonite: Clays & Clay Minerals 25, 201–204.CrossRefGoogle Scholar
  29. Ruiz, H. A. and Low, P. F. (1976) Thermal expansion of interlayer water in clay systems. II. Effect of clay composition: in Colloid and Interface Science, Vol. 3, M. Kerker, ed., Academic Press, New York, 503–515.CrossRefGoogle Scholar
  30. Russell, J. D. and Farmer, V. C. (1964) I. R. spectroscopic study of the dehydration of montmorillonite and saponite: Clay Minerals Bull. 5, 443–464.CrossRefGoogle Scholar
  31. Serratosa, J. M. (1960) Dehydration studies by i.r. spectroscopy: Amer. Mineral. 45, 1101–1104.Google Scholar
  32. Swenson, C. A. (1965) Absolute infrared intensities of HDO in aqueous solution: Spectrochim. Acta 21, 987–993.CrossRefGoogle Scholar
  33. Szymanski, H. A. (1964) Theory and Practice of Infrared Spectroscopy: Plenum Press, New York, 375 pp.CrossRefGoogle Scholar
  34. Tsubomura, H. (1956) Nature of the hydrogen bond. III. The measurement of the infrared absorption intensities of free and hydrogen-bonded O-H bands. Theory of the increase of the intensity due to the hydrogen bond: J. Chem. Phys. 24, 927–931.CrossRefGoogle Scholar
  35. Vinogradov, S. N. and Linnell, R. H. (1971) Hydrogen Bonding: Van Nostrand Reinhold Co., New York, 319 pp.Google Scholar
  36. Wall, T. T. and Hornig, D. F. (1965) Raman intensities of HDO and structure in liquid water: J. Chem. Phys. 43, 2079–2087.CrossRefGoogle Scholar
  37. Walrafen, G. E. (1972) Raman and infrared spectral investigations of water structure: in Water, a Comprehensive Treatise, Vol. 1, F. Franks, ed., Plenum Press, New York, 151–214.Google Scholar

Copyright information

© Clay Minerals Society 1980

Authors and Affiliations

  • J. Salle de Chou
    • 1
  • P. F. Low
    • 1
  • C. B. Roth
    • 1
  1. 1.Department of AgronomyPurdue UniversityWest LafayetteUSA

Personalised recommendations