Clays and Clay Minerals

, Volume 27, Issue 6, pp 411–416 | Cite as

Effect of Ionic Strength and Ion Pair Formation on the Adsorption of Nickel by Kaolinite

  • Shas V. Mattigod
  • A. S. Gibali
  • A. L. Page


Adsorption of Ni(II) by Ca- and Na-saturated kaolinites was studied in equilibrating solutions with total Ni concentrations ranging from 118 to 946 μg/liter. Background electrolytes used in these experiments were 0.005,0.01,0.025, and 0.5 M Ca(N03)2,0.002 and 0.005 M CaSO4, 0.01 and 0.1 M NaNO3, and 0.005 and 0.05 M Na2SO4, Ion speciation in equilibrium solutions was calculated by the computer program GEOCHEM. Computed Ni2+ concentrations and activities at equilibrium were correlated with total Ni adsorbed by kaolinite. Increasing ionic strength resulted in decreasing Ni adsorption. Adsorption of Ni was greater from solutions when NO3 was the dominant anion. Based on adsorption data in SO4 medium, the standard free energy of adsorption of Ni2+ ion on kaolinite was computed to be —27 kJ/mole.


Die Adsorption von Ni2+ durch Ca- und Na-gesättigte Kaolinite wurde in Lösungen nahe dem Gleichgewicht untersucht, die Gesamt-Ni-Konzentrationen im Bereich von 118 bis 946 μ.g/liter hatten. Als Hilfselektrolyte wurden in diesen Experimenten verwendet: 0,005, 0,01, 0,025, und 0,5 M Ca(NO3)2, 0,002 und 0,005 M CaSO4, 0,01 und 0,1 M NaNO3 sowie 0,005 und 0,05 M Na2SO4. Die Verteilung der Ionenarten in den Gleichgewichtslösungen wurde mit dem Computerprogramm GEOCHEM berechnet. Die berechneten Ni2+-Konzentrationen und -Aktivitäten bei Gleichgewicht wurden mit dem Gesamt-Ni, das durch Kaolinit adsorbiert war, korreliert. Eine zunehmende Ionenstärke bewirkt eine abnehmende Ni-Adsorption. Die Ni-Adsorption aus den Lösungen war größer, wenn NO3 das vorherrschende Anion war. Aufgrund der Adsorptionsdaten bei SO42−-Medium wurde die Freie Energie der Ni2+-Adsorption an Kaolinit mit —27 kj/mol berechnet.


L’adsorption de Ni(II) par des kaolinites saturées de Ca et Na a été étudiée dans des solutions équilibrantes avec des concentrations totales de Ni s’étendant de 118 à 946 μg/litre. Des électrolytes de fond utilisées dans ces expériences étaient 0,005, 0,01, 0,025, et 0,5 M Ca(N03)2; 0,002 et 0,005 M CaSO4; 0,01 et 0,1 M NaNO3; et 0,005 et 0,05 M Na2SO4. La spéciation d’ions dans les solutions d’équilibre a été calculée par le programme d’ordinateur GEOCHEM. Les concentrations et activités de Ni2+ calculées à l’équilibre ont été apparentées à Ni total adsorbé par la kaolinite. La force ionique croissante a résulté en une adsorption décroissante de Ni. Lorsque NO3 était l’anion dominant dans les solutions, l’adsorption de Ni était la plus élevée. En se basant sur les données d’adsorption dans un milieu SO4, on a calculé que l’énergie libre standard d’adsorption de l’ion Ni2+ sur la kaolinite était —27 kJ/mole.

Key Words

Ion speciation Ionic strength Ion pair Kaolinite Nickel adsorption 


Изучалась адсорбция Ni(II) каолинитами, насыщенными Са и Na, в равновесных растворах с общими концентрациями Ni, изменяющимися от 118 до 946 /иг/литр. Дополнительными электролитами, используемыми в этих экспериментах были 0,005, 0,01, 0,025; и 0,5 М Са(NO3)2; 0,002 и 0,005 М СаSO4; 0,01 и 0,1 М NaNO3; и 0,005 и 0,05 М NaSO4. Образование ионов в равновесных растворах определялось с помощью компьютерной программы ГЕОХИМ. Подсчитанные концентрации и активности Ni2+ при равновесии коррелировались с общим количеством Ni, адсорбированным каолинитом. Увеличивающаяся ионная сила вызвала уменьшение адсорбции Ni. Адсорбция Ni из растворов была больше, когда NO3 бул главным анионом. На основании данных адсорбции в среде SO4, была вычислена стандартная свободная энергия адсорбции иона Ni2+ каолинитом, равная −27 кДж/моль.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baes, C. F., Jr. and Mesmer, R. E. (1976) The Hydrolysis of Cations: John Wiley & Sons, New York, 489 pp.Google Scholar
  2. Bell, R. P. and George, J. H. B. (1953) The complete dissociation of some thallous and calcium salts at different temperatures: Trans. Faraday Soc. 49, 619–627.CrossRefGoogle Scholar
  3. Bradford, G. R., Bair, F. L., and Hunsaker, V. (1971) Trace and major element contents of soil saturation extracts: Soil Sci. 112, 225–230.CrossRefGoogle Scholar
  4. Counts, M. E. (1975) Adsorption of heavy metal ions on mineral surfaces. Ph.D. thesis, Virginia Polytechnic & State University, Blacksburg, Virginia, 201 pp.Google Scholar
  5. Davies, C. W. (1927) The extent of dissociation of salts in water: Trans. Faraday Soc. 23, 351–356.Google Scholar
  6. Davies, C. W. (1962) Jon Association: Butterworths, London, 189 pp.Google Scholar
  7. Dowdy, R. H., Larson, R. E., and Epstein, E. (1976) Sewage sludge and effluent use in agriculture: in Land Application of Waste Materials, Soil Con. Soc. Amer., Ankeny, Iowa, 138–153.Google Scholar
  8. Dunsmore, H. S. and Nancollas, G. H. (1964) Dissociation of the bisulfate ion: J. Phys. Chem. 68, 1579–1581.CrossRefGoogle Scholar
  9. Elgabaly, M. M. and Jenny, H. (1943) Cation and anion interchange with zinc montmorillonite clays: J. Phys. Chem. 47, 399–408.CrossRefGoogle Scholar
  10. Farrah, H. and Pickering, W. F. (1976) The sorption of copper species by clays. I. Kaolinite: Aust. J. Chem. 29, 1167–1176.CrossRefGoogle Scholar
  11. Fedorov, V. A., Shmyd’ko, I. L, Robov, A. M., Simaeva, L. S., Kukhtina, V. A., and Mironov, V. E. (1973) Nitrate complexes of cobalt (II) and nickel (II): Russ. J. Inorg. Chem. 18, 673–675.Google Scholar
  12. Fedorov, V. A., Robov, A. M., Shmyd’ko, I.I., Vorontseva, N. A., and Mironov, V. E. (1974) Interaction of alkaline earth element ions with nitrate ions in aqueous solutions: Russ. J. Inorg. Chem. 19, 950–953.Google Scholar
  13. Fisher, F. H. and Fox, A. P. (1975) NaSO4 ion pairs in aqueous solutions at pressures up to 2000 atm: J. Solution Chem. 4, 225–226.CrossRefGoogle Scholar
  14. Giles, C. H., MacEwàn, T. H., Nakhwa, S. N., and Smith, D. (1960) Studies on adsorption: Part XL A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids: J. Chem. Soc, 3973–3993.Google Scholar
  15. Harned, H. S. and Davis, R. (1943) The dissociation constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°C: J. Amer. Chem. Soc. 65, 2030–2037.CrossRefGoogle Scholar
  16. Helgeson, H. C. (1967) Thermodynamics of complex dissociation in aqueous solution at elevated temperatures: Jour. Phys. Chem. 71, 3121–3136.CrossRefGoogle Scholar
  17. Jacobson, R. L. and Langmuir, D. (1974) Dissociation constants of calcite and CaHCO3+ from 0° to 50°C: Geochim. Cosmochim. Acta 38, 301–318.CrossRefGoogle Scholar
  18. Kabata-Pendias, A. (1968) The sorption of trace elements by soil forming minerals: Rocz. Glebozn. 19, 55–72.Google Scholar
  19. Koppelman, M. H. and Dillard, J. G. (1977) A study of the adsorption of Ni(II) and Cu(II) by clay minerals: Clays & Clay Minerals 25, 457–462.CrossRefGoogle Scholar
  20. Lafon, G. M. and Truesdell, A. H. (1971) Temperature dependence of sodium sulfate complexing in aqueous solutions: Trans. Amer. Geophys. Union 52, 362 (abstract).Google Scholar
  21. Mattigod, S. V. and Sposito, G. (1977) Estimated association constants for some complexes of trace metals with inorganic ligands: Soil Sci. Soc. Amer. J. 41, 1092–1097.CrossRefGoogle Scholar
  22. McLean, G. W. (1966) Retention and release of Ni by clays and soils: Ph.D. thesis, University of California, Riverside, 93 pp.Google Scholar
  23. Nair, V. S. K. and Nancollas, G. H. (1959) Thermodynamics of ion association: Part VI. Some transition metal sulfates: J. Chem. Soc, 3934–3939.Google Scholar
  24. Nakayama, F. S. (1970) Sodium bicarbonate and carbonate ion pairs and their relation to the estimation of the first and second dissociation constants of carbonic acid: J. Phys. Chem. 74, 2726–2728.CrossRefGoogle Scholar
  25. Nakayama, F. S. (1971) Thermodynamic functions for the dissociation of NaHCO30, NaCO3, H2CO30, and HCO3: J. Inorg. Nucl. Chem. 33, 1287–1291.CrossRefGoogle Scholar
  26. Nakayama, F. S. and Rasnick, B. A. (1967) Calcium electrode method for measuring dissociation and solubility of calcium sulfate dihydrate: Anal. Chem. 39, 1022–1023.CrossRefGoogle Scholar
  27. Olofsson, G. and Hepler, L. G. (1975) Thermodynamics of ionization of water over wide ranges of temperature and pressure: J. Solution Chem. 4, 127–143.CrossRefGoogle Scholar
  28. Page, A. L. (1974) Fate and effects of trace elements in sewage sludge when applied to agricultural lands. A literature review study: Rep. Office of Res. and Dev., USEPA, Cincinnati, Ohio, 98 pp.Google Scholar
  29. Papanicolaou, E. P. and Nobeli, C. (1977) A contribution to the study of ZnCl+ adsorption by soils: Z. Pflanzenernaehr. Bodenkd. 140, 543–548.CrossRefGoogle Scholar
  30. Phelps, P. L. and Anspaugh, L. R. (1976) Imperial Valley environmental project: Progress Rpt. Lawrence Livermore Lab. Univ. Calif., Livermore, 214 pp.Google Scholar
  31. Pittwell, L. R. (1967) A theory of secondary ore body formation based on a study of coordination effects associated with Ethiopian and related rivers, especially those of carbonate, nitrite and halide ions: Report submitted to Haile Selassie I. Univ., Addis Ababa, 140 pp.Google Scholar
  32. Reardon, E. J. and Langmuir, D. (1974) Thermodynamic properties of ion pairs MgCO3° and CaCO30 from 10° to 50°C: EOS Trans. AGU 54, 260.Google Scholar
  33. Sposito, G. and Mattigod, S. V. (1977) On the chemical foundation of the sodium adsorption ratio: Soil Sci. Soc. Amer. J. 41, 323–329.CrossRefGoogle Scholar
  34. Sprague, S. and Slavin, W. (1964) Determination of very small amounts of copper and lead in KCl by organic extraction and atomic adsorption spectophotometry: At. Absorpt. Newsl. 3, 37.Google Scholar
  35. Walsh, L. M., Sumner, M. E., and Corey, R. B. (1976) Consideration of soils for accepting plant nutrients and potentially toxic nonessential elements: in Land Application of Waste Materials, Soil Con. Soc. Amer., Ankeny, Iowa, 22–47.Google Scholar

Copyright information

© The Clay Minerals Society 1979

Authors and Affiliations

  • Shas V. Mattigod
    • 1
  • A. S. Gibali
    • 1
  • A. L. Page
    • 1
  1. 1.Department of Soil and Environmental SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations