Advertisement

Clays and Clay Minerals

, Volume 26, Issue 6, pp 397–408 | Cite as

Kaolinite Synthesis. I. Crystallization Conditions at Low Temperatures and Calculation of Thermodynamic Equilibria. Application to Laboratory and Field Observations

  • A. La Iglesia
  • M. C. Van Oosterwyck-Gastuche
Article

Abstract

The equilibrium diagrams developed for Al-hydroxide and for kaolinite by Garrels and Christ (1965) have been modified by taking into account the existence of gels. From the stability zones obtained, the “appropriate” concentrations can be deduced and utilized for synthesizing these species, provided the requirements to insure good crystal growth are observed. Among procedures to promote these crystallizations, homogeneous precipitation processes (La Iglesia et al., 1974, 1976) appear to be particularly adequate.

The theoretical considerations provide an explanation for most of the processes observed until now, both successful and unsuccessful syntheses, and also give an explanation for many field observations. The crystallizations, however, remain poorly reproducible, indicating that many factors are still poorly known. Some points requiring further investigation include (i) better values for ΔGr0, (ii) the influence of organic complexes, (iii) the effect of preexisting crystalline phases, (iv) those involving dehydration processes in these systems.

Résumé

Les diagrammes d’équilibre développés pour l’hydroxide d’Al et pour la kaolinite par Garrels et Christ (1965) ont été modifiés en prenant en considération l’existence de gels. Les concentrations “appropriées” peuvent être déduites des zones de stabilité obtenues et utilisées pour la synthétisation de ces espèces à condition que les exigences pour une bonne croissance de cristaux soient remplies. Parmi les procédés employés pour induire ces cristallisations, ceux de précipitation homogène semblent particulièrement appropriés (La Iglesia et al., 1974–1976).

Les considérations théoriques donnent une explication à la plupart des procédés observés jusqu’à présent, à la fois aux synthèses réussies et ratées, et donnent aussi une explication à beaucoup d’observations sur le terrain. Les cristallisations restent cependant mal reproduisibles, indiquant que de nombreux facteurs sont encore mal connus. Certains points demandant une investigation plus profonde sont(i) de meilleures valeurs pour ΔG°,(ii) l’influence des complexes organiques, (iii) l’effet de phases cristal-r lines pré-existentes, (iv) celles impliquant des procédés de déshydratation dans ces systèmes.

Key Words

Aluminum Hydroxide Kaolinite Synthesis Thermodynamic 

Абстракция

Диаграммы равновесия, построенные Гаррелсом и Кристом /1965/ для гидроокиси А1 и каолинита, были модифицированы с учетом существования гелей. На основе полученных стабильных зон,“надлежащая” концентрация может быть определена и использована для синтезирования этих видов, при условии, что соблюдаются условия, обеспечивающие хороший рост кристаллов. Среди процедур, обеспечивающих такую кристаллизацию, процесс гомогенного осаждения /Ла Игле-сия и др. 1974–1976/ представляется особенно подходящим.

Теоретические исследования обеспечивают объяснения большинства процессов, наблюдавшихся до настоящего времени, как успешные так и безуспешные синтезы, а также дают объяснения многим полевым наблюдениям. Кристаллизация, однако, остается плохо воспроизводимой, указывая, что многие факторы еще недостаточно известны. Некоторые вопросы, требующие дальнейших исследований, включают 1) более точные значения для ДС°, 2) влияние органических соединений, 3) воздействие первоначально существовавших кристаллических фаз, 4) вопросы, включающие дегидратационные процессы в этих системах.

Zusammenfassung

Die Gleichgewichtsdiagramme, welche von Garreis und Christ (1965) für Aluminiumhydroxyd und für Kaolinit entwickelt wurden, wurden umgeändert, indem die Existenz von Gelen in Betracht gezogen wurde. Von den erhaltenen Stabilisierungszonen konnten die geeigneten Konzentrationen abgeleitet und zur Synthese benutzt werden, vorausgesetzt, daß die Bedingungen für die Züchtung von guten Kristallen eingehalten werden. Von denen Methoden, die Kristallisation fördern, erscheint das homogene Ausfällungsverfahren (La Iglesia et al., 1974–1976) besonders angemessen. Die theoretischen Erwägungen geben eine Erklärung für die meisten Verfahren ab, die bis jetzt untersucht wurden und erklären auch viele Beobachtungen im Felde. Die Kristallisationen dagegen bleiben schlecht reproduzierbar, was darauf hindeutet, daß viele Faktoren noch nicht ganz verstanden werden. Einige Punkte, welche weitere Untersuchungen verlangen, sind (i)bessere Werte für ΔGr0,(ii)die Beeinflußung von organischen Komplexen,(iii) der Effekt von präexistierenden kristallinen Phasen,(iv) und die Dehydratationsverfahren in diesen Systemen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auger, F. (1972) Cristallisation exceptionnelle de kaolinite dans le Lias inférieur de Vendée (France): Int. Clay Conf. Madrid, Kaolin Symposium 65–69.Google Scholar
  2. Burriel Martí, F. (1967) Sobre la precipitatión homogénea en química analitica: Chronache di Chemica 17, 14–24.Google Scholar
  3. Cartwright, P. F. S., Newman, E. J. and Wilson, D. W. (1967) Precipitation from homogeneous solution: Analyst (London) 92, 1100, 663–679.CrossRefGoogle Scholar
  4. Dekeyser, W. and Amelynckx, S. (1955) Les Dislocations et la Croissance des Cristaux: Masson et Cie, Paris, 184 pp.Google Scholar
  5. De Kimpe, C., Gastuche, M. C. and Brindley, G. W. (1961) Ionic coordination in alumino-silicic gels in relation to clay mineral formation: Am. Mineral. 46, 1370–1381.Google Scholar
  6. De Kimpe, C., Gastuche, M.W. and Brindley, G.W. (1964) Lowtem-perature synthesis of clay minerals: Am. Mineral. 49, 1–16.Google Scholar
  7. Estéoule, J. (1969) Contribution à la genèse des argiles dioctaédriques dans des conditions de surface: Thèse. Université de Rennes, série B, Order no. 102, Series no. 55, 116 pp.Google Scholar
  8. Feth, J. A., Robertson, C. E. and Polzer, W. L. (1964) Sources of mineral constituents in water from granitic rocks, Sierra Nevada, California and Nevada: U.S. Geol. Surv. Water Supply Pap. 1535-J, 73 pp.Google Scholar
  9. Feitknecht, W. and Schindler, P. (1963) Solubility constants of metal oxides, metal hydroxides and metal oxide salts: Butterworths Scientific Press, London.Google Scholar
  10. Fritz, B. and Tardy, Y. (1973) Étude thermodynamique du système gibbsite, quartz, kaolinite, gaz carbonique: Sci. Géol. Bull. (Strasbourg) 26, 4, 339–367.Google Scholar
  11. Gardner, L. R. (1970) A chemical model for the origin of gibbsite from kaolinite: Am. Mineral. 55, 1380–1385.Google Scholar
  12. Garrels, R. M. and Christ, C. L. (1965) Solutions, Minerals and Equilibria: Harper and Row, New York, 450 pp.Google Scholar
  13. Gastuche, M. C. (1964) The octahedral layer: Clays & Clay Minerals, Proc. 12th Nat. Conf. Atlanta 1963, pp. 471–493.Google Scholar
  14. Gastuche, M. C. and De Kimpe, C. (1959) Tentative de synthèse des argiles du groupe du kaolin dans les conditions normales de température et de pression: C. R. Acad. Belg., Bull. Cl. Sci., 5e série, 45, 1087–1104.Google Scholar
  15. Gastuche, M. C. and De Kimpe, C. (1962) La genèse des minéraux argileux de la famille du kaolin.—II. Aspect cristallin: Colloque sur la genèse et la synthèse des argiles, C.N.R.S., No. 105, Paris, pp. 66–81.Google Scholar
  16. Gastuche, M. C. and Herbillon, A. (1962) Étude des gels d’alumine: cristallisation en milieu désionisé: Bull. Soc. Chim. Fr. 1404–1412.Google Scholar
  17. Gibbs, G. W. (1928) Collected Works: Longmans, Green and Co., New York, Vol. 1, p. 325.Google Scholar
  18. Gillis, E. and Dekeyser, W. (1962) Expériences avec de gels de silice et d’alumine: Colloque sur la genèse et la synthèse des argiles, C.N.R.S., No. 105, Paris, pp. 25–29.Google Scholar
  19. Harder, H. (1970) Kaolinit-Synthese bei niedrigen Temperaturen: Naturwissenschaften 57, 193.CrossRefGoogle Scholar
  20. Harder, H. (1972) The role of magnesium in the formation of smectite minerals: Chem. Geol. 14, 241–253.CrossRefGoogle Scholar
  21. Hem, J.D. and Roberson, C. E. (1967) Form and stability of aluminum hydroxide complexes in dilute solution: U.S. Geol. Surv. Water Supply Pap. 1827-A, 55 pp.Google Scholar
  22. Hem, J. D., Roberson, C. E., Lind, C. J. and Polzer, W. L. (1973) Chemical interactions of aluminum with aqueous silica at 25°C: U.S. Geol. Surv. Water Supply Pap. 1827-E, 57 pp.Google Scholar
  23. Hem, J. D. and Lind, J. C. (1974) Kaolinite synthesis at 25°C: Science 184: 1171–1173.CrossRefGoogle Scholar
  24. Huang, W. H. and Keller, W. D. (1970) Dissolution of rock-forming minerals in organic acids: simulated first stage weathering of fresh mineral surface: Am. Mineral. 55, 2076–2094.Google Scholar
  25. Huang, W. H. and Keller, W. F. (1973) New stability diagrams of some phyllosilicates in the SiO2-Al2O3-K2O-H2O system: Clays & Clay Minerals 21, 331–336.CrossRefGoogle Scholar
  26. Hsu, P. H. and Bates, T. F. (1964) Formation of X-ray amorphous and crystalline aluminium hydroxides: Mineral. Mag. 33, 749–768.Google Scholar
  27. Her, R. K. (1955) The Colloid Chemistry of Silica and Silicates: Cornell University Press, Ithaca, N.Y., 424 pp.Google Scholar
  28. Keller, W. D., McGrain, Preston, Ressman, A. L. and Saum, N. M. (1964) Observations on the origin of endellite in Kentucky and their extension to “indianite”: Clays & Clay Minerals 25, 107–120. Proc. 13th Nat. Conf. Clays & Clay Minerals, Madison, Wis., USA.CrossRefGoogle Scholar
  29. Keller, W. D. (1970) Environmental aspects of clay minerals: J. Sediment. Petrol. 40, 788–813.Google Scholar
  30. Kittrick, J. A. (1966) The free energy of formation of gibbsite and Al(OH)4 from solubility measurements: Soil Sci. Soc. Amer. Proc. 30, 5, 595–598.CrossRefGoogle Scholar
  31. Kittrick, J. A. (1970) Precipitation of kaolinite at 25° and 1 atm: Clays & Clay Minerals 18, 261–268.CrossRefGoogle Scholar
  32. Kittrick, J. A. (1971) Soil solution composition and stability of clay minerals: Soil Sci. Soc. Amer. Proc. 35, 3, 450–454.CrossRefGoogle Scholar
  33. Kolthoff, I. M. (1964) The status and trend in analytical chemistry. Talanta Anal. Chem. 11, 75–84.CrossRefGoogle Scholar
  34. Kononova, M. M. (1961) Soil Organic Matter, Its Nature, Its Role on Soil Formation and in Soil Fertility: Acad. Sci. USSR. V. V. Dokuchaev Soil Institute. Pergamon Press, 450 pp.Google Scholar
  35. La Iglesia, A. and Martín Vivaldi, J. L. (1972) A contribution to the synthesis of kaolinite: Proc. Int. Clay Conf. Madrid, 1972, 173–185.Google Scholar
  36. La Iglesia, A. and Martín Vivaldi, J. L. (1975) Synthesis of kaolinite by homogeneous precipitation at room temperature. I. Use of anionic resins in OH form: Clay Miner. 10, 401–407.CrossRefGoogle Scholar
  37. La Iglesia, A., Martín Caballero, J. L. and Martin Vivaldi, J. L. (1974) Formation de kaolinite par précipitation homogène à température ambiante. Emploi de feldspath potassiques: C. R. Acad. Sci. 279, 1143–1145.Google Scholar
  38. La Iglesia, A. and Serna, J. (1974) Cristalizacion de caolinita por pre-cipitación homogénea. Parte II. Empleo de resinas catiónicas en fase H+: Estud. Geol. Madrid 30, 281–287.Google Scholar
  39. La Iglesia, A., and Martin Vivaldi, J. L. Jr. and Lopez Agayo, F. (1976) Kaolinite crystallization at room temperature by homogeneous precipitation. III. Hydrolysis of feldspars: Clays & Clay Minerals 24, 36–42.CrossRefGoogle Scholar
  40. Latimer, W. M. (1952) Oxidation Potentials, 2nd edition: Prentice Hall, New York, 392 pp.Google Scholar
  41. Linares, J. and Huertas, F. (1971a) Síntesis de minerales a temperature ordinaria. Estudio preliminar: Bol. Geol. Min. 82, 77–86.Google Scholar
  42. Linares, J. and Huertas, F. (1971b) Kaolinite: Synthesis at room temperature: Science 171, 896–897.CrossRefGoogle Scholar
  43. Lind, J. C. and Hem, J. D. (1975) Effect of organic solutes on chemical reactions of aluminum. Chemistry of aluminum in natural water: Geol. Surv. Water Supply Pap. 1827-G, 83 + v pp.Google Scholar
  44. Marboe, E. C. and Bentur, S. (1961) A new interpretation of the aging of aluminium hydroxide gel: Silic. Ind. 26, 389–399.Google Scholar
  45. McHardy, W. J. and Thomson, A. P. (1971) Conditions for the formation of bayerite and gibbsite: Mineral. Mag. 38, 358–368.CrossRefGoogle Scholar
  46. Millot, G. (1964) Géologie des Argiles: Masson et Cie., Paris, 499 pp.Google Scholar
  47. Moore, L. R. (1964) The in situ formation and development of some kaolinite macrocrystals: Clay Miner. Bull. 5, 338–352.CrossRefGoogle Scholar
  48. Pauling, L. (1960) The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd edition: Cornell University Press, Ithaca, N.Y., 644 pp.Google Scholar
  49. Pedro, G. (1964) Contribution à l’étude expérimentale de l’altération géochimique des roches cristallines: Thèse Fac. Sci. Paris, ed. I. N. R. A., 149 rue de Grenelle, Paris, 344 pp.Google Scholar
  50. Polzer, W. L. and Hem, J. D. (1965) The dissolution of kaolinite: J. Geophys. Res. 70, 6233–6240.CrossRefGoogle Scholar
  51. Ponomareva, V. V. and Ragim- Zade, V. V. (1969) Comparative study of fulvic and humic acids as agents of silicate mineral decomposition: Sov. Soil Sci. 157–166. [translated from Pochvovedeniye 3, 26–36 (1969).]Google Scholar
  52. Raupach, M. (1963) Solubility of simple aluminium compounds expected in soils.—I. Hydroxides and oxyhydroxides: Aust. J. Soil Res. 1, 28–35.CrossRefGoogle Scholar
  53. Robie, R. A. and Waldbaum, D. R. (1968) Thermodynamic properties of minerals and related substances at 298.15° K and 1 atmosphere pressure and at higher temperatures: U.S. Geoi. Surv. Bull. 1295, 256 pp.Google Scholar
  54. Rossini, F. D., Wagman, D. D. and Evans, W. H. (1952) Selected values of chemical thermodynamic properties: Nat. Bur. Stand. Circ. 500.Google Scholar
  55. Sabatier, G. (1962) Discussion: Colloque sur la Genèse et la Synthèse des Argiles. C.N.R.S., No. 105, p. 75.Google Scholar
  56. Sánchez Camazano, M., Saavedra, J. and Garcia Sanchez, A. (1974) Présence de gibbsite dans les sols à granite du système central, Espagne: Bull. Groupe Fr. Argiles 26, 287–295.CrossRefGoogle Scholar
  57. Sanderson, R. T. Chemical periodicity, 4th edition: Reinhold Publ. Corp., N.Y., 330pp.Google Scholar
  58. Siffert, B. (1962) Quelques réactions de la silice en solution: la formation des argiles: Mém. Serv. Carte Géol. Alsace Lorraine 21, 86 pp.Google Scholar
  59. Szpila, K. (1972) Chemical variability of original kaolins in Wyszo-nowice deposit, Poland: Int. Clay Conf. Madrid, 1972, Kaolin Symposium, 111–123.Google Scholar
  60. Tan, K. H. (1975) The catalytic decomposition of clay minerals by complex reaction with humic and fulvic acid: Soil Sci. 120, 188–194.CrossRefGoogle Scholar
  61. Wey, R. and Siffert, B. (1962) Reactions de la silice monomoléculaire en solution avec les ions Al3+ et Mg2+. Colloque sur la Genèse et la Synthèse des Argiles, C.N.R.S., No. 105, 11–23.Google Scholar
  62. Willard, M. H. and Tang, N. K. (1937) A study of the precipitation of aluminium basic sulfate by urea: J. Am. Chem. Soc. 59, 1190–1196.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1978

Authors and Affiliations

  • A. La Iglesia
    • 1
  • M. C. Van Oosterwyck-Gastuche
    • 2
  1. 1.Departemento de Cristalografía, Mineralogía, y Mineralotecnia Facultad de GeologíaSección de Genesis y Síntesis Mineral Instituto “Lucas Mallada” del C.S.I.C.MadridSpain
  2. 2.Département de Géologie et de MinéralogieMusée royal de l’Afrique centraleTervurenBelgium

Personalised recommendations