Advertisement

Clays and Clay Minerals

, Volume 23, Issue 2, pp 145–152 | Cite as

The Relationship between the I.R. Spectra of Serpentines and Their Structures

  • S. Yariv
  • L. Heller-Kallai
Article

Abstract

Possible assignments are suggested for some of the absorption bands in the 1150–400 cm−1 region of the i.r. spectra of serpentines. Polarized light was used to identify the out-of-plane vibrations in antigorites and platy lizardites and the vibrations parallel to the fibre axis in chrysotiles and fibrous lizardites. An attempt is made to correlate some known structural characteristics and the chemical composition of the serpentines with some features of the i.r. spectra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aumento, F. (1967) A serpentine mineral showing diverse strain-relief mechanisms: Am. Miner. 52, 1399–1413.Google Scholar
  2. Brindley, G. W., Comer, J. J., Uyeda, R. and Zussman, J. (1958) Electron-optical observations with crystals of antigorite: Acta Cryst. 11, 99–102.CrossRefGoogle Scholar
  3. Brindley, G. W. and Zussman, J. (1959) Infra-red absorption data for serpentine minerals: Am. Miner. 44, 185–188.Google Scholar
  4. Farmer, V. C. (1958) The infra-red spectra of talc, saponite and hectorite: Min. Mag. 31, 829–845.Google Scholar
  5. Farmer, V. C. and Russell, J. D. (1964) The infra-red spectra of layer silicates: Spectrochim. Acta 20, 1149–1173.CrossRefGoogle Scholar
  6. Faust, T. G. and Fahey, J. J. (1962) The serpentine-group minerals: U.S.G.S. Prof. Paper 384-A, 1–92.Google Scholar
  7. Kunze, G. (1961) Antigorit: Strukturtheoretische Grundlagen und ihre praktische Bedeutung fuer die weitere Serpentin-Forschung: Fortschr. Miner. 39, 206–324.Google Scholar
  8. Luce, R. W. (1971) Identification of serpentine varieties by infra-red absorption: U.S.G.S. Prof. Paper 750B, 199–201.Google Scholar
  9. Page, N. J. (1968) Chemical differences among the serpentine ‘polymorphs’: Am. Miner. 53, 201–215.Google Scholar
  10. Pampuch, R. and Ptak, W. (1968) Pol. Akad. Nauk, Oddzal Krakowie, Pr. Miner. 15, 7.Google Scholar
  11. Pampuch, R. and Ptak, W. (1970) Pol. Akad. Nauk, Oddizal Krakowie, Pr. Kom. Ceram., Ceram. 14, 7–36.Google Scholar
  12. Russell, J. D., Farmer, V. C. and Velde, B. (1970) Replacement of OH by OD in layer silicates, and identification of the vibrations of these groups in infra-red spectra: Min. Mag. 37, 869–879.CrossRefGoogle Scholar
  13. Stubican, V. and Roy, R. (1961) Isomorphous substitution and infra-red spectra of layer lattice silicates: Am. Miner. 46, 32–51.Google Scholar
  14. Veniale, F. and van der Marel, H. V. (1963) An interstrati-fied saponite-swelling chlorite mineral as a weathering product of lizardite rock from St. Margherita Staffora (Pavia Province), Italy: Beitraege zur Mineral, und Petrogr. 9, 198–245.Google Scholar
  15. Whittaker, E. S. W. (1956) The structure of chrysotile—II: Clinochrysotile: Acta Cryst. 9, 855–862.CrossRefGoogle Scholar
  16. Whittaker, E. J. W. and Zussman, J. (1956) The characterization of serpentine minerals by X-ray diffraction. Min. Mag. 31, 107–126.Google Scholar
  17. Whittaker, E. J. W. and Wicks, F. J. (1970) Chemical differences among the serpentine ‘polymorphs’: A discussion: Am. Miner. 55, 1025–1047.Google Scholar

Copyright information

© The Clay Minerals Society 1975

Authors and Affiliations

  • S. Yariv
    • 1
  • L. Heller-Kallai
    • 1
  1. 1.Department of GeologyHebrew UniversityJerusalemIsrael

Personalised recommendations