Advertisement

Clays and Clay Minerals

, Volume 23, Issue 2, pp 91–96 | Cite as

Nickel Containing Regularly Interstratified Chlorite-Saponite from Szklary, Lower Silesia, Poland

  • Andrzej Wiewióra
  • Kazimierz Szpila
Article

Abstract

The present paper describes a new mineral species, namely a regularly interstratified chlorite —trioctahedral smectite bearing as much as 24% NiO. The high Ni content proves it to be nickel mineral.

On the diffractogram of the raw sample, an integral series of reflections with l.d(001) = 30·1 Å was obtained. To study the nature of the component layers, X-ray examinations of glycerol saturated samples and also dehydrated by heating were accomplished. Thermal and chemical analyses were performed in the usual way.

The crystallochemical formula can be presented as follows: saponite layer—(Mg,Ni)3·00 (Si3·75Al0·25) O10(OH)2, charge −0·25; Ca0·06 (Mg,Ni)0·06 K0·01, 4·07 H2O, charge +0·25; chlorite layer—(Mg, Ni)2·02(Al,Fe*)0·65(Si3·76Al0·24) O10(OH)2, charge −0·25; (Mg,Ni)2·75 (Al,Fe*)0·25 (OH)6, charge +O·25.

The full mineral and chemical characteristics lead to precise conclusions concerning the composition and structure not only of the nonexpanding chlorite layers, but especially of the expanding layers. The latter show the chemical composition of saponite but the interlayer material is composed partly of exchange cations and molecular water and partly of “brucite-like pillows”.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blatter, C. J., Roberson, H. E. and Thompson, G. R. (1973) Regularly interstratified chlorite-dioctahedral smectite in dike-intruded shales, Montana: Clays and Clay Minerals 21, 207–212.CrossRefGoogle Scholar
  2. Bradley, W. F. and Weaver, C. E. (1956) A regularly interstratified chlorite-vermiculite clay mineral: Am. Miner. 41, 497–504.Google Scholar
  3. Brindley, G. W. (1961) Chlorite Minerals. In The X-ray identification and crystal structure of clay minerals (Edited by Brown, G.) Mineralogical Society, London.Google Scholar
  4. Brindley, G. W. and Maksimovic, Z. (1974) The nature and nomenclature of hydrous nickel-containing silicates: 2nd meeting European Clav Groups, Strasbourg.Google Scholar
  5. Earley, J. W, Brindley, G. W., McVeagh, W. J. and Vanden Heuval, R. C. (1956) A regular interstratified montmoril-lonite-chlorite: Am. Miner. 41, 258–267.Google Scholar
  6. Earley, J. W. and Milne, I. R. (1956) Regularly interstratified montmorillonite-chlorite in basalt: 4th Nat. Clay Conf. 381–384.Google Scholar
  7. Gallitelli, F. (1956) Chlorite-vermiculite: Rend. Accad. Naz. Lincei 21, 146–154.Google Scholar
  8. Heckroodt, R. O. and Roering, C. (1965) A high-aluminous chlorite-swelling chlorite regular mixed-layer clay mineral: Clay Minerals 6, 83–90.CrossRefGoogle Scholar
  9. Iwanowa, W. P. (1961) Termogramy mineralov: Zap. Vses. Min. Obshch. ser. (2) 90, 50–90.Google Scholar
  10. Johnson, L. J. (1964) Occurrence of regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil: Am. Miner. 49, 556–573.Google Scholar
  11. Kossovskaja, A. G., Dritz, V. A. and Sokolova, T. H. (1971) O specifikie formirovaniya glinistykh mineralov w raznykh iacyalno-klimaticheskikh obstanovkakh. Epigenez i jego mineralnye indikatory. Trans. 221, 35–53.Google Scholar
  12. Lippman, F. (1954) Keuper clay from Zaisersweiher: Heidelberg Beiti: Min. 4, 130–134.Google Scholar
  13. MacEwan, D. M. C. (1961) Montmorillonite Minerals. In The X-ray identification and crystal structures of clay minerals (Edited by Brown, G.) Mineralogical Society, London.Google Scholar
  14. Martin-Vivaldi, J. L. and MacEwan, D. M. C. (1960) Corrensite and swelling chlorite: Clay Minerals Bull. 4, 173–181.CrossRefGoogle Scholar
  15. Orcel, J. and Caillère. S. (1938) Thermal transformations in magnesian prochlorites: C. r. Acad. Sci., Paris 207, 788–790.Google Scholar
  16. Orcel, J. and Renaud, P. (1941) Dehydration of ferro-magnesian chlorites: C. r. Acad. Sci., Paris 212, 918–921.Google Scholar
  17. Ostrowicki, B. (1965) Mineraly niklu strefy wietrzenia ser-pentynitów w Szklarach (Dolny Sląsk): Oddz. PAN w Krakowie, Prace Miner alogiczne 1, 7–92.Google Scholar
  18. Spangenberg, K. and Müller, M. (1949) Die lateritische Zersetzung des Peridotits bei der Bildung der Nickelerzlagerstätte von Frankenstein im Schlesien: Heidelberg Beitr. Min. Petr. 1, 560–572.Google Scholar
  19. Stoch, L. (1967) Fizyczno-chemiczne podstawy interpretacji wyników termicznej analizy roz’nicowej: Oddz. PAN w Krakowie, Prace Mineralogiczne 7, 7–77.Google Scholar
  20. Sudo, T. and Kodama, H. (1957) Aluminian mixed-layer montmorillonite-chlorite. Z. Krist. 109, 379–387.CrossRefGoogle Scholar
  21. Traube, (1888) Die Minerale Schlesiens Breslau.Google Scholar
  22. Wiewióra, A. (1973) Kjystalochemiczne Studium mieszano-pakictowych mineralów kaolinit-smektyt: Arch. Mineral. 31, 5–112.Google Scholar

Copyright information

© The Clay Minerals Society 1975

Authors and Affiliations

  • Andrzej Wiewióra
    • 1
  • Kazimierz Szpila
    • 2
  1. 1.Research Centre of Geological SciencesPolish Academy of SciencesPoland
  2. 2.Institute of Geochemistry, Mineralogy and PetrologyWarsaw UniversityPoland

Personalised recommendations