Clays and Clay Minerals

, Volume 22, Issue 4, pp 361–365 | Cite as

Swelling of Montmorillonite in Polar Organic Liquids

  • S. Olejnik
  • A. M. Posner
  • J. P. Quirk


The crystalline and osmotic swelling of Na-, Cs-, Mg- and Ca-montmorillonite has been measured in dimethyl sulphoxide and in formamide, N-methyl formamide, dimethyl formamide, N-methyl acetamide and dimethyl acetamide. These liquids have similar dipole moments but their relative permittivities vary appreciably from values less than water to values greater than water.

Na-montmorillonite exhibits osmotic swelling (diffuse double layer development −d(001) ≫ 19 Å) in formamide and N-methyl formamide and Cs gives osmotic swelling behavior in formamide. Cs-montmorillonite in the crystalline swelling region give spacings greater than those found for water with all liquids. Mg- and Ca-montmorillonite did not give spacings greater than 19 Å in any of the liquids studied.

The swelling behavior of montmorillonite is affected by relative permittivity but for liquids with a similar relative permittivity methyl substitution in the molecule may prevent the development of diffuse double layers on the particle surfaces.


Le gonflement cristallin et osmotique de montmorillonites Na, Cs, Mg, et Ca, a été mesuré dans le diméthylsulfoxyde, la formamide, la N méthylformamide, la diméthylformamide, la N méthylacétamide et la diméthylacétamide. Ces liquides ont des moments dipolaires voisins, mais leur permittivité relative varie d’une façon appréciable de valeurs inférieures à des valeurs supérieures à celle de l’eau.

La montmorillonite Na montre un gonflement osmotique (développement d’une double couche diffuse — d (001) ≫ 19 Å) dans la formamide et la N méthylformamide, et l’argile Cs a un comportement de gonflement osmotique dans la formamide. La montmorillonite Cs donne, avec tous les liquides, dans la région de gonflement cristallin, des espacements plus grands que ceux qui sont trouvés avec l’eau. Les montmorillonites Mg et Ca ne donnent pas d’espacements supérieurs à 19 Å dans aucun des liquides étudiés.

Le comportement gonflant de la montmorillonite est affecté par la permittivité relative, mais pour les liquides qui ont une permittivité relative semblable, la méthyl substitution dans la molécule peut empêcher le développement de doubles couches diffuses à la surface des particules.


Die kristalline und osmotische Quellung von Na-, Cs-, Mg- und Ca-Montmorillonit wurde in Dimethylsulphoxid und in Formamid, N-Methylformamid, Dimethylformamid, N-Methylacetamid und Dimethylacetamid gemessen. Diese Flüssigkeiten haben ähnliche Dipolmomente, aber ihre Dielektrizitätskonstanten variieren erheblich schwischen Werten, die geringer und solchen, die größer sind als die des Wassers.

Na-Montmorillonit zeigt osmotische Quellung (Entwicklung einer diffusen Doppelschicht — d (001) ≫ 19 Å) in Formamid und N-Methylformamid und Cs ergibt osmotisches Quellungsverhalten in Formamid. Cs-Montmorillonit weist im Bereich der kristallinen Quellung mit allen Flüssigkeiten Schichtabstände auf, die größer als die mit Wasser gefundenen sind. Mg- und Ca-Montmorillonit ergaben mit allen untersuchten Flüssigkeiten keine Schichtabstände über 19 Å.

Das Quellungsverhalten von Montmorillonit wurde durch die Dielektrizitätskonstante beeinflußt, jedoch kann für Flüssigkeiten mit ähnlicher Dielektrizitätskonstante Methylsubstitution im Molekül die Ausbildung einer diffusen Doppelschicht an den Teilchenoberflächen verhindern.


Измеряют кристаллическое и осмотическое разбухание Na-, Cs- Mg- и Са-монт- мориллонитов в диметилсульфоксиде и в формамиде, в N-метилформамиде, в диметил- формамиде, в N-метилаиетамиде и в диметилацетамиде. Эти жидкости имеют одинаковые дипольные моменты, но их сравнительные диэлектрические проницаемости значительно различаются от числовых значений ниже воды до числовых значений выше воды.

Na-монтмориллонит выявляет осмотическое разбухание в формамиде и N-метилформамиде (развивается диффундирование двойных слоев — d(001) ≫ 19Å), a Cs выявляет поведение осмотического разбухания в формамиде. В области кристаллического разбухания Cs-монтмориллонит образует большие расстояния между атомами во всех этих жидкостях, чем в воде. Mg- и Са-монтмориллониты не дали расстояний более, чем 19А в экспериментальных жидкостях.

Ha поведение разбухания монтмориллонита влияет диэлектрическая проницаемость, но в жидкостях с тождественной диэлектрической проницаемостью замена метила в молекуле может предотвратить развитие диффудированных двойных слоев на поверхностях частиц.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R., Ko, E. F. C., Mac, Y. C. and Parker, A. J. (1967) Solvation of Ions—XI: Solubility products and instability constants in water, methanol, formamide, dimethylformamide, dimethylacetamide, dimethyl sulphoxide, acetonitrile and hexamethylphosphorotriamide: J. Am. Chem. Soc. 89, 3703–3712.CrossRefGoogle Scholar
  2. Barshad, I. (1952) Factors affecting the interlayer expansion of vermiculite and montmorillonite with organic substances: Soil Sci. Soc. Am. Proc. 16, 176–182.CrossRefGoogle Scholar
  3. Bass, S. J., Nathan, W. I., Meighan, R. M. and Cole, R. H. (1964) Dielectric properties of alkyl amides—II. Liquid dielectric constant and loss: J. Phys. Chem. 68, 509–515.CrossRefGoogle Scholar
  4. Dorsey, N. A. (1940) Properties of Ordinary Water-Substance. American Chemical Soc., Monograph Series. Reinhold, New York.Google Scholar
  5. Edwards, D. G., Posner, A. M. and Quirk, J. P. (1965) Repulsion of chloride ions by negatively charged clay surfaces—II: Monovalent cation montmorillonite: Trans. Farad. Soc. 61, 2816–2819.CrossRefGoogle Scholar
  6. Greene-Kelly, R. (1955a) Sorption of aromatic organic compounds by montmorillonite—I. Orientation studies: Trans. Farad. Soc. 51, 412–424.CrossRefGoogle Scholar
  7. Greene-Kelly, R. (1955b) Sorption of aromatic organic compounds by montmorillonite—II. Packing studies with pyridine: Trans. Farad. Soc. 51, 425–430.CrossRefGoogle Scholar
  8. Leader, G. R. and Gormley, J. F. (1951) The dielectric constant of N-methylamides: J. Am. Chem. Soc. 73, 5731–5733.CrossRefGoogle Scholar
  9. MacEwan, D. M. C. (1948) Complexes of clays with organic compounds—I. Complex formation between montmorillonite and halloysite and certain organic liquids: Trans. Farad. Soc. 44, 349–367.CrossRefGoogle Scholar
  10. Meighan, R. M. and Cole, R. H. (1964) Dielectric properties of alkyl amides—I. Vapour phase dipole moments and polarization in benzene solution: J. Phys. Chem. 68, 503–508.CrossRefGoogle Scholar
  11. Millen, W. A. (1967) Ion association and solvation in dipolar aprotic solvents: Ph.D. Thesis, University of Western Australia.Google Scholar
  12. Millen, W. A. and Watts, D. W. (1967) Theoretical calculations of thermodynamic functions of solvation of ions: J. Am. Chem. Soc. 89, 6051–6056.CrossRefGoogle Scholar
  13. Norrish, K. (1954) The swelling of montmorillonite: Disc. Farad. Soc. 18, 120–134.CrossRefGoogle Scholar
  14. Norrish, K. and Quirk, J. P. (1954) Crystalline swelling of montmorillonite—use of electrolytes to control swelling: Nature 173, 255–256.CrossRefGoogle Scholar
  15. Norrish, K. and Rausell Colom, J. A. (1963) Low angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite: Clays and Clay Minerais 10, 123–149.CrossRefGoogle Scholar
  16. Olejnik, S., Posner, A. M. and Quirk, J. P. (1971) Adsorption of pyridine N-oxide onto montmorillonite: Clays and Clay Minerais 21, 191–198.CrossRefGoogle Scholar
  17. Posner, A. M. and Quirk, J. P. (1964a) The adsorption of water from concentrated electrolyte solutions by montmorillonite and illite: Proc. R. Soc. Lond. 278A, 35–56.Google Scholar
  18. Posner, A. M. and Quirk, J. P. (1964b) Changes in basal spacing of montmorillonite in electrolyte solutions: J. Colloid Sci. 19, 798–812.CrossRefGoogle Scholar
  19. Quirk, J. P. (1968) Particle interaction and soil swelling: Israel J. Chem. 6, 213–234.CrossRefGoogle Scholar
  20. Schlafer, H. L. and Schaffernicht, W. (1960) Dimethyl sulphoxide as a solvent for inorganic compounds: Angew. Chem. 72, 618–626.CrossRefGoogle Scholar
  21. Tahoun, S. A. (1965) Complexes of montmorillonite with primary, secondary, and tertiary amides: Ph.D. Thesis, Michigan State University.Google Scholar
  22. Warkentin, B. P. and Schofield, R. K. (1962) Swelling pressures of Na-montmorillonite in NaCl solutions: J. Soil Sci. 13, 98–105.CrossRefGoogle Scholar
  23. Yariv, S., Russell, J. D. and Farmer, V. C. (1966) Infra-red study of the adsorption of benzoic acid and nitrobenzene in montmorillonite: Israel J. Chem. 4, 201–213.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 1974

Authors and Affiliations

  • S. Olejnik
    • 1
  • A. M. Posner
    • 1
  • J. P. Quirk
    • 1
  1. 1.Department of Soil Science and Plant Nutrition, Institute of AgricultureUniversity of Western AustraliaNedlandsUSA

Personalised recommendations