Advertisement

Clays and Clay Minerals

, Volume 22, Issue 4, pp 345–353 | Cite as

Iron Oxidation and Reduction Effects on Structural Hydroxyl and Layer Charge in Aqueous Suspensions of Micaceous Vermiculites

  • J. A. Veith
  • M. L. Jackson
Article

Abstract

Four Na2S2O4-reduced Na-vermiculites, each with some trioctahedral mica interstratified, were oxidized with H2O2 at pH 6·5 and again reduced with Na2S2O4 in suspensions at pH 7·5–8·0. The layer charge (CEC + K+), measured at pH 6·50, did not change significantly when octahedral Fe was oxidized (7–92 mmole 100g−1) or reduced (6–71 mmole 100 g−1). Electroneutrality was maintained within the octahedral sheet when Fe was oxidized or reduced. When Fe(II) was oxidized, electroneutrality was maintained by deprotonation of octahedral OH groups,
$${\left\{ {{{\left[ {Fe\left( {II} \right)} \right]}_2}M{g_4}{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}}\leftrightarrows{\left\{ {{{\left[ {Fe\left( {III} \right)} \right]}_2}M{g_4}{O_4}{{\left( {OH} \right)}_2}O_2^*} \right\}^ {\pm 0}} + 2{e^ - } + 2{H^ + }$$
(a)
and by ejection of (dissolution of structural) octahedral metallic cations,
$${\left\{ {{{\left[ {Fe\left( {II} \right)} \right]}_5}Mg{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}} \rightarrow {\left\{ {{{\left[ {Fe\left( {III} \right)} \right]}_4}{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}} + 5{e^ - } + F{e^{3 + }} + M{g^{2 + }}.$$
(b)

When Fe(III) was reduced, electroneutrality was maintained by reprotonation of the deprotonated sites (O*, equation a). Reaction (b) was not reversible. Thus, reversibility of the reaction, Fe(II) ⇄ Fe(HIX within the octahedral sheet decreased with increasing amount of ejected metallic cations. The amount of Fe(III) and Mg2+ ejected per Fe(II) oxidized was related to the degree of vermiculitization, being greatest with Na-degraded biotite [0·03 Fe3+ and 0·11 Mg2+ per Fe(II) oxidized] and lowest (nearly zero) with South African vermiculite. The number of deprotonated (O*) and reversible sites increased from 0·69 per Fe(II) oxidized with the K-depleted biotite to approximately 1·0 with South African vermiculite. The weathering increment was small since, of the total amount of Fe + Mg, less than 1·3 per cent was ejected from any of the four vermiculitic materials. When biotite was K-depleted, about 20 m-equiv of layer charge per 100g (300°C basis) was lost, while 51 mmole of Fe(II) per 100g was oxidized in the presence of Na2S2O4 and 82 mmoles in its absence in the aqueous suspensions. Since sequential reduction-oxidation-reduction treatments of K-depleted biotite and mica-containing vermiculites did not cause significant changes in layer charge (r2 = 0·04), the layer charge changes were concluded to be entirely independent of the oxidation or reduction of Fe in these minerals.

Résumé

Quatre vermiculites Na réduites par Na2S2O4, contenant chacune un mica trioctaédrique interstratifié, ont été oxydées par H2O2 à pH 6,5 et de nouveau réduites par Na2S2O4 en suspension à pH 7,5–8,0. La charge du feuillet (CEC + Ke) mesurée à pH 6,50 ne change pas significativement quand Fe octaédrique est oxydé (7–92 mmol 100g−1) et réduit (6–71 mmol 100 g−1). L’électroneutralité est maintenue à l’intérieur de la couche octaédrique quand Fe est oxydé ou réduit. Quand Fe(II) est oxydé, l’électroneutralité est maintenue par déprotonation de groupes OH octaédriques,
$${\left\{ {{{\left[ {Fe\left( {II} \right)} \right]}_2}M{g_4}{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}}\leftrightarrows{\left\{ {{{\left[ {Fe\left( {III} \right)} \right]}_2}M{g_4}{O_4}{{\left( {OH} \right)}_2}O_2^*} \right\}^ {\pm 0}} + 2{e^ - } + 2{H^ + }$$
(a)
et par éjection (dissolution) de cations métalliques octaédriques du réseau,
$${\left\{ {{{\left[ {Fe\left( {II} \right)} \right]}_5}Mg{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}} \rightarrow {\left\{ {{{\left[ {Fe\left( {III} \right)} \right]}_4}{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}} + 5{e^ - } + F{e^{3 + }} + M{g^{2 + }}$$
(b)

Quand Fe(lII) est réduit, l’électroneutralité est maintenue par reprotonation des sites déprotonés [0* équation (a)] La réaction (b) n’est pas réversible.

Ainsi, la réversibilité de la réaction Fe(II) ⇆ Fe(III) à l’intérieur de la couche octaédrique diminue quand augmente la quantité de cations métalliques éjectés. La quantité de Fe(III) et Mg2 éjectés, par Fe(II) oxydé, est reliée au degré de vermiculitisation; elle est la plus grande avec la biotite dégradée Na (0,03 Fe3+ et 0,11 Mg2+ par Fe(II) oxydé) et la plus petite (environ zéro) avec la vermiculite d’Afrique du Sud. Le nombre de sites déprotonés (0*) et réversibles augmente de 0,69 par Fe(II) oxydé avec la biotite appauvrie en K, à environ 1,0 avec la vermiculite d’Afrique du Sud. L’incrément d’altération est petit, puisque, sur la quantité totale de Fe + Mg, moins de 1,3 pour cent a été éjecté de chacun des 4 matériaux vermiculitiques. Quand la biotite est appauvrie en K., environ 20 m-equiv de charge du feuillet par 100 g (référence 300°C) disparaissent, tandis que sont oxydées 51 mmoles de Fe(II) par 100 g en présence de Na2S2O4 et 82 mmoles en l’absence de ce réactif, en suspension aqueuse. Puisque les traitements répétés réduction-oxydation-réduction de la biotite appauvrie en K et des vermiculites contenant du mica, n’entraînent pas de changements significatifs dans la charge du feuillet (r2 = 0,04) on en a conclu que les modifications de charge du feuillet sont entièrement indépendantes de l’oxydation et de la réduction de Fe dans les minéraux.

Kurzreferat

Vier Na2S2O4-reduzierte Na-Vermiculite, alle in Wechsellagerung mit etwas trioktaedrischem Glimmer, wurden bei pH 6,5 mit H2O2 oxidiert und in Suspension bei pH 7,5–8,0 mit Na2S2O4 wieder reduziert. Die Schichtladung (AK + K), gemessen bei pH 6,50, zeigte keine deutliche Veränderung, wenn das oktaedrische Fe oxidiert (7–92 mmol 100g) oder reduziert (6–71 mmol 100 g) wurde. Bei Oxidation und Reduktion des Eisens in der Oktaederschicht wurde die Elektroneutralität aufrecht erhalten. Bei der Oxidation von Fe(II) wurde die Elektroneutralität durch Deprotonierung der oktaedrischen OH-Gruppen,
$${\left\{ {{{\left[ {Fe\left( {II} \right)} \right]}_2}M{g_4}{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}}\leftrightarrows{\left\{ {{{\left[ {Fe\left( {III} \right)} \right]}_2}M{g_4}{O_4}{{\left( {OH} \right)}_2}O_2^*} \right\}^ {\pm 0}} + 2{e^ - } + 2{H^ + }$$
(a)
und durch Abgabe (Lösung) von metallischen Gitterkationen aus Oktaederposition,
$${\left\{ {{{\left[ {Fe\left( {II} \right)} \right]}_5}Mg{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}} \rightarrow {\left\{ {{{\left[ {Fe\left( {III} \right)} \right]}_4}{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}} + 5{e^ - } + F{e^{3 + }} + M{g^{2 + }}$$
(b)
gewahrt.

Wenn Fe(III) reduziert wurde, wurde die Elektroneutralität durch Reprotonierung der deprotonierten Gitterplätze [0* in Gleichung (a)] bewirkt. Reaktion (b) war nicht reversibel. Doe Reversibilität der Reaktion Fe(II) ⇆ Fe(III) innerhalb der Oktaederschicht nahm somit mit steigender Menge abgegebener metallischer Kationen ab. Die je oxidiertes Fe(II) abgegebene Menge an Fe(III) und Mg2+ stand zum Grad der Vermiculitisierung in Beziehung und war bei durch Na umgewandeltem Biotit am größten (0,03 Fe3+ und 0,11 Mg2+ je oxidiertes Fe(II)) und bei Vermiculit Süd-Afrika am geringsten (nahezu 0). Die Zahl der deprotonierten (0*) und reversiblen Gitterplätze stieg von 0,69 je oxidiertes Fe(II) bei Biotit nach K-Freisetzung auf ungefähr 1,0 bei Vermiculit Süd-Afrika an. Die Zunahme der Verwitterung war gering, da von der Gesamtmenge an Fe + Mg weniger als 1,3 prozent von jeder der vier Vermiculitsubstanzen abgegeben wurde. Bei der K-Freisetzung aus Biotit gingen etwa 20 mval der Schichtladung je 100 g (bezogen auf bei 300°C behandeltes Material) verloren, während in den wässrigen Suspensionen 51 mmol Fe(II) 100 g−1 in Gegenwart und 82 mmol in Abwesenheit von Na2S2O4 oxidiert wurden. Da aufeinander folgende Reduktions-Oxidations-Reduktions-Behandlungen der K-freien Biotite und glimmerhaltigen Vermiculite keine signifikante Veränderung in der Schichtladung hervorriefen, r2 = 0,04) wurde geschlossen, daß die Veränderungen der Schichtladung in diesen Mineralen von der Oxidation oder Reduktion des Fe vollständig unabhängig sind.

Резюме

Четыре Nа-вермикулита с восстановленными №28204, каждый с пропластками триоктаэдральной слюды подвергали окислению в присутствии Н2O2 при рН 6,5, а затем вновь восстанавливали Na2S2O4 в суспензии при рН 7,5–8,0. Заряд слоев (СЕС + K+), изме-ренный при рН 6,5, почти что не изменился ни при окислении октаэдрального Fе (7–92 ммоль/100 г) ни при его восстановлении (6–71 ммоль/100 г). В октаэдральном листе при окислении или восстановлении Fе поддерживается электронейтральность. При окислении Fе(II), электро-нейтральность сохраняется путем потери протонов октаэдральных групп ОН (а),
$${\left\{ {{{\left[ {Fe\left( {II} \right)} \right]}_2}M{g_4}{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}}\leftrightarrows{\left\{ {{{\left[ {Fe\left( {III} \right)} \right]}_2}M{g_4}{O_4}{{\left( {OH} \right)}_2}O_2^*} \right\}^ {\pm 0}} + 2{e^ - } + 2{H^ + },$$
(a)
и путем выбрасывания (растворение структурных) октаэдральных металлических катионов, (b),
$${\left\{ {{{\left[ {Fe\left( {II} \right)} \right]}_5}Mg{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}} \rightarrow {\left\{ {{{\left[ {Fe\left( {III} \right)} \right]}_4}{O_4}{{\left( {OH} \right)}_4}} \right\}^{ \pm 0}} + 5{e^ - } + F{e^{3 + }} + M{g^{2 + }}.$$
(b)

При восстановлении Fе(III), электронейтральность поддерживается репротонацией потерян-ных протонов (О*, уравнение а). Реакция (Ь) необратима. Таким образом, обратимость реакции, Fе(II) ⇄ Fе(III), в октаэдральном листе понижается с увеличением количества выброшенных металлических катионов. Количество Fе(III) и Мg2+, выбрасываемых окисленным Fе(II), зависит от степени вермикулитизации, происходящей больше всего в №-деградированном биотите [0,03 Fе3+ и 0,11 Мg2+ /окисленный Fе(II)] и меньше всего (почти что нуль) в южно-африканском вермикулите. Количество потерянных протонов (О*) и количество обратимых заложений повышается от 0,69 в Fе(II) окисленном биотитом с истощенным К до примерно 1,0 в южно-африканском вермикулите. Выветривание почти что было незаметно, так как из общего количества Fе + Мg менее, чем 1,3 процента было выброшено из каждого из четырех вермикулитов. При истощении К из биотита, примерно 20 м-экв заряда слоя на 100 г (базис 300°С) было потеряно, в то время как 51 ммоль Fе(II) на 100 г окислялось в присутствии Nа2S2O4 в водной суспензии и 82 ммоль при его отсутствии. Так как, последовательная обработка «восстановление-окисление-восстановление» биотита с истощенным K и верми- кулитов содержащих слюду не повела к заметным переменам в заряде слоя (r2 = 0,04), заклю-чили, что изменения зарядов слоев совершенно не зависят от окисления или восстановления Fе в этих материалах.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison, C. C., Addison, W. E., Neal, G. H. and Sharp, J. H. (1962) Amphiboles—I: The oxidation of crocidolite: J. Chem.Soc. 1, 1468–1471.CrossRefGoogle Scholar
  2. Bar-on, P. and Shainberg, I. (1970) Hydrolysis and decomposition of Na-montmorillonite in distilled water: Soil Sci. 109, 241–246.CrossRefGoogle Scholar
  3. Barshad, I. and Kishk, F. M. (1970) Factors affecting potassium fixation and cation exchange capacities of soil vermiculite clays: Clays and Clay Minerals 18, 127–137.CrossRefGoogle Scholar
  4. Brindley, G. W. and Youell, R. F. (1953) Ferrous chamosite ferric chamosite: Miner. Mag. 30, 57–70.Google Scholar
  5. Coulter, B. S. (1969) The equilibria of K/Al exchange in clay minerals and acid soils: J. Soil Sci. 20, 27–83.CrossRefGoogle Scholar
  6. Davis, C. E., Ahmad, N. and Jones, R. L. (1970) Weight loss on ignition and K fixation in clays: Soil Sci. Soc. Am. Proc. 34, 345–347.CrossRefGoogle Scholar
  7. Eugster, H. P. and Wones, D. R. (1962) Stability relations of the ferruginous biotite. annite: J. Petrol. 3, 82–125.CrossRefGoogle Scholar
  8. Farmer, V. C., Russell, J. D., McHardy, W. J., Newman, A. C. D., Ahlrichs, J. L. and Rimsaite, J. Y. H. (1971) Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites: Miner. Mag. 38, 121–137.CrossRefGoogle Scholar
  9. Foster, M. D. (1963) Interpretation of the composition of vermiculites and hydrobiotites: Clays and Clay Minerals 10, 70–89.CrossRefGoogle Scholar
  10. Foster, M. D. (1964) Water content of micas and chlorites: Geol. Survey Prof. Papers 474-F1-F15.Google Scholar
  11. Gilkes, R. J., Young, R. C. and Quirk, J. P. (1972) Oxidation of ferrous iron in biotite: Nature Phys. Sci. 236, 89–91.CrossRefGoogle Scholar
  12. Gruner, J. W. (1934) The structures of vermiculites and their collapse by dehydration: Am. Mineralogist 19, 557–575.Google Scholar
  13. Ismail, F. T. (1969) Role of ferrous iron oxidation in the alteration of biotite and its effect on the type of clay minerals formed in soils of arid and humid regions: Am. Mineralogist 54, 1460–1466.Google Scholar
  14. Ismail, F. T. (1970) Oxidation-reduction mechanism of octahedral iron in mica type structures: Soil Sci. 110, 167–171.CrossRefGoogle Scholar
  15. Jackson, M. L. (1969) Soil Chemical Analysis—Advanced Course. 2nd Edn. Published by the author, Dept. of Soil Science, University of Wisconsin, Madison.Google Scholar
  16. Jackson, M. L. (1963a) Interlayering of expansible layer silicates in soils by chemical weathering: Clays and Clay Minerals 11, 29–46.CrossRefGoogle Scholar
  17. Jackson, M. L. (1963b) Aluminium bonding in soils: A unifying principle in soil science: Soil Sci. Soc. Am. Proc. 27, 1–10.CrossRefGoogle Scholar
  18. Leonard, R. A. and Weed, S. B. (1970) Effects of potassium removal on the b-dimension of phlogopite: Clays and Clay Minerals 18, 197–202.CrossRefGoogle Scholar
  19. Marques, J. M. and Scott, A. D. (1968) Preparation of sodium-degraded mica: Clavsand Clay Minerals 16, 321–322.CrossRefGoogle Scholar
  20. Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate: Clays and Clay Minerals 7, 317–327.CrossRefGoogle Scholar
  21. Mokma, D. L., Syers, J. K. and Jackson, M. L. (1970) Cation exchange capacity and weathering of muscovite macroflakes: Soil Sci. Soc. Am. Proe. 34, 146–151.CrossRefGoogle Scholar
  22. Newman, A. C. D. (1967) Changes in phlogopites during their artificial alteration: Clay Minerals, 215–227.Google Scholar
  23. Newman, A. C. D. (1970) The synergetic effect of hydrogen ions on the cation exchange of potassium in micas: Clay Minerals 8, 361–373.CrossRefGoogle Scholar
  24. Newman, A. C. D. and Brown, G. (1966) Chemical changes during the alteration of micas: Clay Minerals 6, 297–310.CrossRefGoogle Scholar
  25. Raman, K. V. and Jackson, M. L. (1966) Layer charge relations in clay minerals of micaceous soils and sediments: Clays and Clay Minerals 14, 53–68.CrossRefGoogle Scholar
  26. Rich, C. I. (1968) Hydroxy interlayers in expansible layer silicates: Clays and Clay Minerals 16, 15–30.CrossRefGoogle Scholar
  27. Rimsaite, J. (1956) Biotites intermediate between dioctahedral and trioctahedral micas: Clays and Clav Minerals 15, 375–393.CrossRefGoogle Scholar
  28. Rimsaite, J. (1967) Studies of rock-forming micas: Geol. Survey. Canada Bull. 149, 1–82.Google Scholar
  29. Rimsaite, J. (1970) Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of the hydroxyl group: Contr. Mineral. Petrol. 25, 225–240.CrossRefGoogle Scholar
  30. Robert, M. (1971) Etude expérimentale de l’évolution des micas: Ann. Agron. 22, 43–93.Google Scholar
  31. Rosenqvist, I. Th. (1963) Studies in position and mobility of the H atoms in hydrous micas: Clays and Clay Minerals 11, 117–135.CrossRefGoogle Scholar
  32. Roth, C. B., Jackson, M. L., Lotse, E. G. and Syers, J. K. (1968) Ferrous-ferric ratio and CEC changes on déferration of weathered micaceous vermiculite: Israel J. Chem. 6, 261–273.CrossRefGoogle Scholar
  33. Roth, C. B., Jackson, M. L. and Syers, J. K. (1969) Deferration effect on structural ferrous-ferric iron ratio and CEC of vermiculites and soils: Clays and Clay Minerals 17, 253–264.CrossRefGoogle Scholar
  34. Scott, A. D. and Smith, S. J. (1966) Susceptibility of interlayer potassium in micas to exchange with sodium: Clays and Clay Minerals 14, 69–81.CrossRefGoogle Scholar
  35. Tsvetkov, A. I. and Val’Yashikhina, E. P. (1956) Bull. Acad. Sci. U.S.S.R. Ser. Geol. 5, 74.Google Scholar
  36. Vedder, W. and Wilkins, R. W. T. (1969) Dehydroxylation and rehydroxylation, oxidation and reduction of micas: Am. Mineralogist 54, 482–509.Google Scholar
  37. Veith, J. A. and Schwertmann, U. (1972) Reaktionen von Ca-Montmorillonit und Ca-Vermiculit mit Kohlensäure: Z. Pflanzenernähr. Bodenkunde 131, 21–37.CrossRefGoogle Scholar
  38. Walker, G. F. (1949) The decomposition of biotite in the soil: Miner. Mag. 28, 693–703.Google Scholar
  39. Wilson, A. D. (1960) The micro-determination of ferrous iron in silicate minerals by volumetric and colorimetric methods: Analyst 85, 823–827.CrossRefGoogle Scholar
  40. Wilson, M. J. (1970) A study of weathering in a soil derived from a biotite-hornblende rock: Clay Minerals 8, 291–303.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 1982

Authors and Affiliations

  • J. A. Veith
    • 1
  • M. L. Jackson
    • 1
  1. 1.Department of Soil ScienceUniversity of WisconsinMadisonUSA

Personalised recommendations