Advertisement

Clays and Clay Minerals

, Volume 21, Issue 2, pp 89–95 | Cite as

A Natural 17Å Montmorillonite-Organic Complex from Alleppey, Kerala State-India

  • Johan Moum
  • Chatty N. Rao
  • T. S. R. Ayyar
Article

Abstract

A black organic-rich alluvial clay from Alleppey, Kerala State, India, gave a well defined 17Å reflection in the natural untreated state. Ethylene glycol and heat treatments showed it to be essentially a smectite. Treatments with H2O2 and 0·1 N NaOH contracted the spacing to about 14Å, indicating that sorbed organic matter was responsible for the original enhanced spacing.

In the natural state, the clay was chiefly divalent with respect to the ions on its exchange sites and was at a pH of 6·2. Subsequent attempts to resorb the organic matter (which had been extracted from the clay by repeated NaOH treatments, converted to the H-form, concentrated and freeze-dried) into the interlamellar space of H2O2-treated clay proved successful only after the pH was brought down to 3•2 and the clay converted to an essentially monovalent state through repeated 1 N NaCl treatments.

Résumé

Une argile alluviale noire riche en matière organique, provenant de Alleppey, Etat de Kerala, Indes, a donné une réflexion bien définie à 17 Å, à l’état naturel non traité. Le glycol éthylénique et les traitements thermiques ont montré qu’il s’agissait essentiellement d’une smectite. Les traitements à H2O2 et Na OH 0,1 N ont ramené l’espacement à 14 Å environ, ce qui indique que la matière organique fixée était responsable de l’espacement originel élevé pour un tel minéral.

A l’état naturel, l’argile était à pH 6,2 et ses sites d’échange étaient principalement saturés par des ions divalents. Les tentatives ultérieures destinées à fixer à nouveau la matière organique (qui avait été extraite de l’argile par des traitements répétés avec Na OH, puis convertie sous forme H, puis concentrée et lyophilisée) dans l’espace interfeuillet de l’argile traitée par H2O2, n’ont réussi qu’avec une argile amenée à pH 3,2 et convertie en une forme saturée essentiellement par des ions monovalents au moyen de traitements répétés par Cl Na 1 N.

Kurzreferat

Eine schwarzer, an organischer Substanz reicher, alluvialer Ton aus Alleppey, Staat Kerala, Indien, ergab im natürlichen, unbehandelten Zustand einen gut definierten 17 Å-Reflex. Äthylenglykol- und Wärmebehandlung zeigten, daß es sich im wesentlichen um einen Smectit handelt. Behandlungen mit H2O2 und 0,1 n NaOH verringern den Abstand auf 14 Å. Dies zeigt, daß sorbierte organische Substanz für den ursprünglich erhöhten Basisebenenabstand verantwortlich war.

Im natürlichen Zustand waren die Austauschplätze vorwiegend mit zweiwertigen Ionen abgesättigt. Der pH-Wert betrug 6,2. Anschließende Versuche, die organische Substanz (die vom Ton durch wiederholte Behandlung mit NaOH extrahiert, in die H-Form überführt, konzentriert und der Gefriertrocknung unterworfen worden war) wieder in die Zwischenschichten des H2O2-behandelten Tones einzulagern, erwiesen sich nur dann als erfolgreich, wenn zuvor der pH-Wert auf 3,2 herabgesetzt und der Ton durch wiederholte Behandlung mit 1 n NaCl im wesentlichen mit einwertigen Ionen belegt worden war.

Резюме

В природном необработанном состоянии черная богатая органическими веществами наносная глина из Аллеппи, Штат Кэрала в Индии, дала отчетливое отражение 17 Å. Обработка этиленгликолем и термообработка показали, что эта глина по существу является смектитом. Обработка Н2O2 и 0,1 N NaOH сузило межслоевые промежутки до приблизительно 14 Å, что указывает на то, что первоначальные большие межслоевые промежутки были вызваны сорбированным органическим веществом. В природном состоянии глина является, главным образом, двухвалентной относительно ионного обмена и ее рН — 6,2. Дальнейшие попытки сорбировать органическое вещество (экстрагированное из глины обработкой NaOH и превращенное в форму-Н; концентрированную глину высушивали при температуре ниже 0°С) в межслоевой промежуток глины обработанной Н2O2 увенчалось успехом только после понижения рН до 3,2 и превращения глины в одновалентное состояние посредством повторных обработок с NaCl.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayyar, T. S. R. and Ramakrishnan (1969) Effect of environment on shear strength of sedimented alluvial organic clay: Proc. 11th Annual Session of the Ind. Nat. Soc. of Soil Mech. and Foundation Engng. Ahmedabad, India.Google Scholar
  2. Brindley, G. W. (1961) Experimental Methods: X-Ray Identification and Crystal Structures of Clay Minerals. (Edited by G. Brown), pp. 1–50. Mineralogical Society, London.Google Scholar
  3. Greenland, D. J. (1965a) Interaction between clays and organic compounds in soils—I. Mechanism of interaction between clays and defined organic compounds: Soils and Fert. 28, 412–425.Google Scholar
  4. Greenland, D. J. (1965b) Interaction between clays and organic compounds in soils—II. Adsorption of soil organic compounds and its effect on soil properties: Soils and Fert. 28, 521–532.Google Scholar
  5. Greenland, D. J. (1971) Interactions between humic and fulvic acids and clays: Soil Sci. 111, 34–41.CrossRefGoogle Scholar
  6. Grim, R. E. (1962) Applied Clay Mineralogy: 422p. McGraw-Hill, New York.CrossRefGoogle Scholar
  7. King, W. (1884) Considerations on the smooth water anchorages or mud banks of Narakkal and Alleppey on the Travancore Coast: Geol. Surv. India. Records 17, 14–27.Google Scholar
  8. King, L. H. (1967) Isolation and characterization of organic matter from glacial marine sediments on the Scotian Shelf: Bedford Institute of Oceanography Report No. 67-4, 18p.Google Scholar
  9. Kodama, H. and Schnitzer, M. (1968) Effects of inter-layer cations on the adsorption of a soil humic compound by Montmorillonite: Soil Sci. 106, 73–74.CrossRefGoogle Scholar
  10. MacEwan, D. M. C. (1962) Interlamellar reactions of clays and other substances: Clays and Clay Minerals, 9, 431–443.CrossRefGoogle Scholar
  11. MacEwan, D. M. C., Amil A. R. and Brown, G. (1961) Interstratified Clay Minerals: X-Ray Identification and Crystal Structures of Clay Minerals (Edited by G. Brown) pp. 393–445. Mineralogical Society, London.Google Scholar
  12. Mortensen, J. L. (1965) Partial Extraction of Organic Matter: Methods of Soil Analysis, Part 2, pp. 1401–1408. Am. Soc. Agron., Madison, Wis.Google Scholar
  13. Narain, J. and Ayyar, T. S. R. (1968) Measurement of soil structure: Proc. Southeast Asian Regional Conference on Soil Engineering. 1, pp. 56–66. Bangkok.Google Scholar
  14. Narain, J. and Ayyar, T. S. R. (1970) Variation of Atterberg limits in relation to strength properties of a highly plastic clay: Indian National Society of Soil Mechanics and Foundation Engineering J., 9, 117–138.Google Scholar
  15. Perez-Rodriguez, J. L. and Wilson, M. J. (1969) Effects of pretreatment on a 14Å swelling mineral from Gartly, Aberdeenshire: Clay Minerals 8, 39–45.CrossRefGoogle Scholar
  16. Rashid, M. A. and King, L. H. (1969) Molecular weight distribution measurements on humic and fulvic acid fractions from marine clays on the Scotian Shelf: Geochim. Cosmochim. Acta. 33, 147–151.CrossRefGoogle Scholar
  17. Rashid, M. A. and King, L. H. (1970) Major oxygen-containing functional groups present in humic and fulvic acid fractions isolated from contrasting marine environments: Geochim. Cosmochim. Acta. 34, 193–201.CrossRefGoogle Scholar
  18. Schnitzer, M. and Kodama, H. (1967) Reactions between a podzol fulvic acid and Na-montmorillonite: Soil Sci. Soc. Am. Proc. 31, 632–636.CrossRefGoogle Scholar
  19. Schnitzer, M. and Kodama, H. (1966) Montmorillonite: Effect of pH on its adsorption of a soil humic compound: Science 153, 70–71.CrossRefGoogle Scholar
  20. Schnitzer, M. (1969) Reactions between fulvic acid, a soil humic compound and inorganic soil constituents: Soil Sci. Soc. Am. Proc. 33, 75–81.CrossRefGoogle Scholar
  21. Warshaw, C. M. and Roy, R. (1961) Classification and a scheme for the identification of layer silicates: Geol. Soc. Am. Bull. 72, 1455–1499.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 1973

Authors and Affiliations

  • Johan Moum
    • 1
  • Chatty N. Rao
    • 1
    • 2
  • T. S. R. Ayyar
    • 1
    • 3
  1. 1.Norwegian Geotechnical InstituteOslo 3Norway
  2. 2.Indian Institute of TechnologyKharagpurIndia
  3. 3.College of EngineeringTrivandrumIndia

Personalised recommendations