Advertisement

Clays and Clay Minerals

, Volume 16, Issue 6, pp 415–423 | Cite as

Sealing Properties of Bentonite Suspensions

  • M. B. Rollins
Article

Abstract

Sealing with waterborne clays is a rapid and low cost method of controlling seepage through porous media whenever the clay source is within economical shipping distance of the sealing site. But more must be learned about this method of sealing before it can be fully utilized.

Water impedance of waterborne bentonites, as measured by water loss in the filter press test, was correlated with their physical, chemical and mineralogical properties. A multiple linear regression analysis showed clay content and exchangeable sodium percentage (ESP) were most highly correlated with water impedance. Swelling, viscosity and gelation of these clays play only a secondary role in forming a water barrier when used as dilute waterborne sealants as suggested by these and other data.

There were strong positive correlations between water loss and samples high in silt-sized cristobalite, quartz and feldspar; and negative correlations between water loss and samples high in clay-sized montmorillonite, chlorite and illite.

Predicted minimum clay contents (of prospective sealers) were found to be 65–75 per cent clay at 70 and 20 per cent exchangeable sodium, respectively.

Résumé

L’obturation au moyen de suspensions d’argile dans de l’eau est un moyen rapide et économique de contrôler les infiltrations à travers les média poreux toutes les fois que la source d’argile se trouve à une distance d’expédition économique de l’emplacement où l’obturation est nécessaire. Pourtant il faut obtenir plus de renseignements concernant cette méthode d’obturation avant de pouvoir l’employer de manière optimum.

L’impédance à l’eau des suspensions aqueuses de bentonite, mesurée sur la base de la perte d’eau dans l’essai à la presse de filtrage a été corrélée avec leurs propriétés physiques, chimiques et minéralogiques. Une analyse multiple de régression linéaire a montré que la teneur en argile et le pourcentage de sodium échangeable (ESP) avaient la corrélation la plus importante avec l’impédance à l’eau. Le gonflement, la viscosité et la gelation de ces argiles jouent seulement un rôle secondaire dans la formation d’une barrière d’eau dans le cas d’emploi en taut qu’agents d’obturation en suspension aqueuse selon les données présentées ici et ailleurs.

Il y avait une corrélation positive et importante entre la perte d’eau et les échantillons à haute teneur en cristobalite vaseux, quartz et feldspar. Des corrélation négatives existaient entre la perte d’eau et les échantillons à teneur élevée en montmorillonite, chlorite et illite argileux.

La teneur minimum anticipée en argile pour les agents d’obturation était entre 65 et 75 pour cent d’argile avec 70 et 20 pour cent sodium échangeable.

Kurzreferat

Die Abdichtung mit Hilfe Ton-Suspensionen ist eine schnelle und billige Methode, um das Sickern durch poröse Media einzuschränken, vorausgesetzt, dass sich die Quelle der Tonminerale vom Standpunkt des Transportes wirtschaftlicher Entfernung von dem Ort der gewünschten Abdichtung befindet. Ehe diese Methode der Abdichtung zur vollen Anwendung kommt, muss sie jedoch zunächst noch in mancher Hinsicht erforscht werden.

Die Wasserimpedanz Wässeriger Bentonit-Suspensionen, gemessen an dem Wasserverlust im Filterpressversuch, wurde in eine Beziehung zu den physikalischen, chemischen und mineralogischen Eigenschaften der Bentoniten gebracht. Eine mehrfache lineare Regressionsanalyse zeigte, dass der Tongehalt und der Gehalt an austauschbarem Natrium (ESP) in engster Korrelation zur Wasserimpedanz standen. Wie diese und andere Daten zeigte, spielten bei Verwendung dieser Stoffe als verdünnte wässerige Abdichtungsmittel das Quellvermögen, die Zähigkeit und die Gelierung dieser Tone nur eine zweitrangige Rolle in der Bildung einer Wasserschranke.

Stark positive Korrelationen bestanden zwischen dem Wasserverlust und Proben mit hohem Gehalt an Cristobalit, Quarz und Feldspat in Schluffgrösse, während negative Korrelationen zwischen Wässerverlusten und Proben mit hohem Gehalt an Montmorillonit, Chlorit und Illit in Tongrösse festgestellt wurden.

Die minimalen Tongehalte (voraussichtlicher Abdichter) betrugen 65 bis 75 Prozent Ton bei einem entsprechenden austauschbaren Natriumgehalt von 70 bzw. 20 Prozent.

Резюме

Изоляция при помощи переносимых водой глин—это быстрый и дешевый метод регулирования просачивания через пористые породы во всех тех случаях, когда источник глины находится на экономически оправдывающемся расстоянии от изолируемого участка. Однако, прежде чем можно будет полностью использовать этот метод изоляции, придется узнать больше о нем.

Водяной импеданс переносимых водой бентонитов, измеряемый потерей воды в филь- трпрессном испытании, был сопоставлен с их физическими, химическими и минералогическими свойствами. Анализ многократного линейного возвращения показал, что глиносодержание и процент обменного натрия были особо тесно связаны с импедансом воды. Набухание, вязкость и жеетинизация этих глин играют лишь второстепенную роль в образовании водяного барьера, пользуясь ими в качестве разбавленных переносимых водой укупоривающих средств, как это подсказывается этими и другими данными.

Имеются сильные положительные корреляции между потерей воды и образцами, содержащими крупное количество кристобалита, кварца и полевого шпата в размере пылеватой фракции; а отрицательные корреляции существуют между потерей воды и образцами, содержащими много монтмориллонита, хлорита и иллита в размере глинистых фракций.

Предсказываемое минимальное глиносодержание возможных уплотнителей составляет 65 до 75% глины при 70 и 20% обменного натрия соответственно.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Colloid Co. (1945) Laboratory methods for evaluating the physical properties of bentonites. Data Sheet No. 251. 4p.Google Scholar
  2. American Petroleum Institute (1957) Recommended practice Standard field procedure for testing drilling fluids: Am. Petrol. Inst. API RP 29, 4th Edition, 23 p.Google Scholar
  3. Bureau of Reclamation (1954) Results of laboratory tests on soils and water for sediment lining demonstrations lower-cost canal lining program: USDI Bur. Reclam. Eng. Labs., Prog. Rpt. No. 1, Gen. Rpt. No. 17. Earth Lab. Rpt. No. EM 377.Google Scholar
  4. Bureau of Reclamation (1957) Hydraulic flume tests using bentonite to reduce seepage: USDl Bur. Reclam., Eng. Labs., Hydraulic Lab. Rpt. No. Hyd. 417.Google Scholar
  5. Bureau of Reclamation (1958) Physical characteristics of the bentonite soil interface-sediment sealing project lower-cost lining program: USDl Bur. Reclam., Eng. Labs., Petrograph Lab. Rpt. No. Pet. 122.Google Scholar
  6. Carter, D. L., Heilman, M. D., and Gonzales, C. I. (1965) Ethylene glycol monoethylether for determining surface area of silicate minerals: Soil Sci. 100, 356–360.CrossRefGoogle Scholar
  7. Curry, R. B. (1955) Penetration and retention of bentonite suspensions in porous media: Dept. Civil Engr., Colo. Agr. Mech. Col., Cer. No. 55 RBC 9.Google Scholar
  8. Curry, R. B., Barker, G. L., and Strach, Z. (1965) Interrelation of physical and chemical properties in flow of colloidal suspensions in porous media: Am. Soc. Agr. Eng. 8, 259–263.Google Scholar
  9. Curry, R. B., and Beasley, R. P. (1960) The flow of colloidal suspensions through porous media as related to reservoir sealing: Univ. Missouri Res. Bul. 741.Google Scholar
  10. Dyal, R. S.. and Hendricks, S. B. (1950) Total surface of clays in polar liquids as a characteristic index: Soil Sci. 69, 421–432.CrossRefGoogle Scholar
  11. Fedotova, M. S., and Pospelova, K. A. (1954) The flocculation of bentonite suspension to reduce the permeability of sands to water: Moscow State Univ., Dokl. Adit. Vol. Nayk, 1129–32.Google Scholar
  12. Fisk, H. G. (1946) Bentonite with test methods and results of tests of Wyoming bentonites: Univ. Wyo. Natural Resources Res. Inst. Bull. No. 2, 39.Google Scholar
  13. Grim. Ralph E. (1953) Clay mineralogy: p. 364, McGraw-Hill, New York.Google Scholar
  14. Gunsallus, B. L., and Waters, E. B. (1957) Mineral industry surveys-Bentonite-Record production in 1956: U.S. Bur. Mines, Mineral Market Report MMS No. 2677.Google Scholar
  15. Hewett, D. F. (1917) The origin of bentonite and the geologic range of related materials in Bighorn Basin, Wyoming: J. Wash. Acad. Sci. 7, 196–198.Google Scholar
  16. Kendall, M. G., and Stuart, A. (1961) The advanced theory of statistics. 2, Inference and Relationship: p. 317, 676 pp. Charles Griffin, London.Google Scholar
  17. McNeal, B. L. (1964) Clay mineral variability in some Punjab soils: Soil Sci. 102, 53–58.CrossRefGoogle Scholar
  18. Newman, E. C. (1956) The penetration and sealing effects of dispersed and flocculated bentonite suspensions in a dune sand: Civil Eng Dept. Colo. Agr. Mech. Col., Cer. No. 56-ECN18.Google Scholar
  19. Newman, E. C. (1957) Sealing effects of dispersed and flocculated bentonite suspensions in a dune sand: Colo. State Univ., Dept. Civil Eng, Cer. No. 57ECN19.Google Scholar
  20. Rausch, D. L., and Curry, R. B. (1963) Effect of viscosity and zeta-potential of bentonite suspensions on flow through porous media: Trans. ASAE 6, 2, 167–9.CrossRefGoogle Scholar
  21. Rollins, M. B. (1967) Sealing sands with waterborne bentonite: Lab study: J. Irrigation Drainage Div. Am. Soc. Civil Engrs. 93, 24–44.Google Scholar
  22. Rollins, M. B. and Dylla, A. S. (1964) Field experiments on sealing permeable fine sand with bentonite: Soil Sci. Soc. Am. Proc. 28, 268–271.CrossRefGoogle Scholar
  23. Rollins, M. B., Hallam, M. J., and Myers, V. I. (1961) The apparent swelling behavior of some moderately dispersed bentonites: Soil Sci. Soc. Am. Proc. 25, 407–409.CrossRefGoogle Scholar
  24. Rollins, M. B., and Pool, D. L. (1968) Measurement of exchangeable cations in bentonites: Clays and Clay Minerals 16, 4, 165–172.CrossRefGoogle Scholar
  25. Ross, C. S., and Hendricks, S. B. (1945) Minerals of the montmorillonite group —their origin and relation to soils and clays: U.S. Geol. Surv. Prof. Paper 205-B.Google Scholar
  26. Ross, C. S., and Shannon, E. V. (1926) The minerals of bentonite and related clays and their physical properties: J. Am. Ceram. Soc. 9, 77–96.CrossRefGoogle Scholar
  27. Sergueev. E. M. (1954) The role of chemical and mineral-ogical composition of materials used in the silting process of sand: Univ. Moscow, Herald (Russian). October.Google Scholar
  28. Shen, R. T. (1957) Report on laboratory testing of the sediment sealing method: Colo. State Univ., Dept. Civil Eng. Cer. No. 57RTS20.Google Scholar
  29. Shen, R. T. (1958) Sediment-sealing with bentonite in a dune sand: Colo. State Univ. Res. Foundation. Dept. Civil Eng. Cer. No.58RTS25.Google Scholar
  30. U.S. Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils: USDA Handbook No. 60, 160 pp.Google Scholar
  31. Williams, F. F., Elsley, B. C. and Weintritt, D. J. (1954) The variation of Wyoming bentonite beds as a function of over-burden: Clays and Clay Minerals 2, 141–151.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 1969

Authors and Affiliations

  • M. B. Rollins
    • 1
  1. 1.U.S. Department of AgricultureRenoUSA

Personalised recommendations