Advertisement

Clays and Clay Minerals

, Volume 16, Issue 1, pp 15–30 | Cite as

Hydroxy Interlayers in Expansible Layer Silicates

  • C. I. Rich
Article

Abstract

Vermiculites and smectites in soils and sediments are frequently partially interlayered or “chloritized”. Dioctahedral expansible layer silicates are those most frequently interlayered, and hydroxy-Al appears to be the principal component of the non-exchangeable interlayer material.

The most favorable soil conditions for interlayer formation appear to be: moderate pH (4·6–5·8), frequent wetting and drying cycles, and low organic matter content.

In marine sediments, hydroxy-Mg interlayering may be significant. Soil-derived clays containing partially filled hydroxy-Al “brucite” sheets may be filled out with hydroxy-Mg. Under reducing conditions, hydroxy-Fe interlayers may be important.

Depending on the OH/Al ratio and Al content of hydroxy-Al interlayers, expansible layer silicate may either promote or retard the formation of gibbsite. Interlayered expansible layer silicates also may be precursors to kaolinite.

Résumé

Les vermiculites et les smectites en sols et sédiments sont souvent partiellement répartis en feuillets interstratifies ou “chlorées”. Les silicates en couches expansibles dioctaédriques sont celles qui sont le plus souvent en feuillets interstratifies et l’hydroxy-Al apparaît être le principal composant du matériau non-interchangeable de la feuillet interstratifie.

Les conditions du sol les plus favorables pour la formation de feuillets interstratifies semblent être: un pH 4,6–5,8 modéré, de fréquents cycles d’humidité et de sècheresse, et une faible teneur en matière organique.

Dans les sédiments marins, une feuillet interstratifie d’hydroxy-Mg peut être importante. Des argiles dérivées du sol contenant des feuillets de “brucite” partiellement remplies d’hydroxy-Al peuvent être remplies d’hydroxy-Mg. Dans certains conditions, les feuillets interstratifies d’hydroxy-Fe peuvent être importantes.

Selon le rapport OH/Al et la teneur en Al’dhydroxo-Al des feuillets interstratifies, le silicate de la feuillet expansible peut soit activer, soit retarder la formation de gibbsite. Les silicates en feuillets interstratifies de la feuillet expansible peuvent aussi être les précurseurs de kaolinite.

Kurzreferat

Vermiculite und Seifensteine in Böden und Ablagerungen sind häufig teilweise mit Zwischenschichten versehen oder “chlotitisiert”. Am häufigsten kommen Zwischenschichten in den dioktahedralen Silikaten mit Quellschichten vor und der Hauptbestandteil des nicht-austauschbaren Zwischenschichtmaterials scheint Hydroxy-Aluminium zu sein.

Die günstigsten Bodenbedingungen für die Bildung von Zwischenschiehten sind scheinbar die folgenden: mässiges pH 5,6–5,8, häufige Nass-und Trockenzyklen, und niedriger Gehalt an organischem Material.

In Meeresablagerungen kann eine bedeutende Zwischenlagerung von Hydroxy-Magnesium vorkommen. Aus dem Boden stammende Tone, die teilweise gefüllte Hydroxy-Aluminium “Brucit” Schichten enthalten, können durch Hydroxy-Mg ausgefüllt werden. Unter Reduktionsbedingungen können Hydroxy-Fe Zwischenschichten von Bedeutung sein.

Je nach dem OH/Al Verhältnis und dem Al Gehalt der Hydroxy-Al Zwischenschichten können Silikate mit Quellschichten die Bildung von Gibbsit entweder fördern oder verzögern. Silikat-Quellschichten mit Zwischenschichten können auch Vorläufer von Kaolinit sein.

Резюме

В грунтах и отложениях вермикулиты и смектиты обычно переслогны частично или-же подвергнуты хлоритизации. Диоктаздрииеские расширяемые слоистые силикаты чаше всего переслоены и главной составляющей необменного прослоенного материала является гидрокси-Аl.

Наиболее благоприятные грунтовые условия для образования прослойков вероятно: умеренное рН (4,6-5,8), частые циклы смачивания и сушки и малое содержание органических веществ.

В морских отложениях, прослаивание гидрокси-Мg может оказаться значительным. Полученные из грунта глины содержат слои брусита, частично наполненные гидрокси-А1, которые могут быть выполнены гидрокси-Мg. В восстановительных условиях важными могут оказаться прослойки гидрокси-Ре.

В зависимости от отношения ОН/Аl и от содержания в прослойках гидрокси-Аl, расширяемые слоистые силикаты активируют или замедляют образованиг гибсита. Прослоенные расширяемые слоистые силикаты могут также являться предшественниками каолинита.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschuier, Z. S., Dwornik, E. J., and Kramer, H. (1963) Transformation of montmorillonite to kaolinite during weathering: Science 141, 148–152.Google Scholar
  2. Aveston, J. (1965) Hydrolysis of the aluminum ion: Ultracentrifugation and acidity measurements: J. Chem. Soc. 4438–4443.Google Scholar
  3. Bailey, S. W. (1966) The status of clay minerai structures: Clays and Clay Minerals, Pergamon Press, New York, 14, 1–23.CrossRefGoogle Scholar
  4. Bailey, S. W., and Tyler, S. A. (1960) Clay minerais associated with the Lake Superior iron ores: Econ. Geol. 55, 150–175.Google Scholar
  5. Bailey, S. W., and Brown, B. E. (1962) Chlorite polytypism: I. Regular and semi-random one-layer structures: Am. Mineralogist 47, 819–850.Google Scholar
  6. Barnhisel, R. I. (1964) The Formation and Stability of Aluminum Interlayers in Clays: Unpublished Ph.D. Thesis, Virginia Polytechnic Institute, Blacksburg, Virginia.Google Scholar
  7. Barnhisel, R. I., and Rich, C. I. (1963) Gibbsite formation from aluminum interlayers: Soil Sci. Soc. Am. Proc. 27, 632–635.Google Scholar
  8. Barnhisel, R. I., and Rich, C. I. (1965) Gibbsite, bayerite, and nordstrandite formation as affected by anions, pH, and mineral surfaces: Soil Sci. Soc. Am. Proc. 29, 531–534.Google Scholar
  9. Barnhisel, R. I., and Rich, C. I. (1966) Preferential hydroxyaluminum interlayering in montmorillonite and vermiculite: Soil Sci. Soc. Am. Proc. 30, 35–39.Google Scholar
  10. Barshad, I. (1960) The effect of the total chemical composition and crystal structure of soil minerais on the nature of exchangeable cations in acidified clays and in naturally occurring acid soils: Trans. 7th Intern. Congr. Soil Sci. 2, 435–444.Google Scholar
  11. Biscaye, P. E. (1964) Mineralogy and sedimentation of the deep-sea sediment fine fraction in the Atlantic Ocean and adjacent seas and oceans: Geochemistry Tech. Report 8, Yale University, Dept. of Geology. 65 pp.Google Scholar
  12. Bradley, W. F. (1953) Analysis of mixed-layer clay mineral structures: Anal. Chem. 25, 727–730.Google Scholar
  13. Brown, C. Q., and Ingram, R. L. (1954) The clay minerais of the Neuse River sediments: J. Sediment Petrol 24, 196–199.Google Scholar
  14. Brown, G. (1953) The dioctahedral analogue of vermiculite: Clay Min. Bull. 2, 64–69.Google Scholar
  15. Brown, G. (1954) Soil morphology and mineralogy. A qualitative study of some gleyed soils from North-West Eng↭d: J. Soil Sci. 5, 145–155.Google Scholar
  16. Bryant, J. P., and Dixon, J. B. (1964) Clay mineralogy and weathering of a Red-Yellow Podzolic soil from quartz mica schist in the Alabama Piedmont: Clays and Clay Minerals, Pergamon Press, New York, 12, 509–521.Google Scholar
  17. Brydon, J. E., Clark, J. S., and Osborne V. (1961) Dioctahedral Chlorite: Can. Mineralogist 6, 595–609.Google Scholar
  18. Brydon, J. E., and Kodama, H. (1966) The nature of aluminum hydroxide montmorillonite complexes: Am. Mineralogist 51, 875–888.Google Scholar
  19. Caillère, S., and Hénin, S. (1949) Formation of chlorite from montmorillonite: Mineral. Mag. 28, 612–620.Google Scholar
  20. Caillère, S., and Hénin S. (1950) Mécanisme d’évolutions des minéraux phylliteaux: Trans. 4th Intern. Congr. Soil Sci. 1, 96–98.Google Scholar
  21. Carstea, D. D. (1965) Conditions of Al, Fe, und Mg Interlayer Formation in Montmorillonite and Vermi-culite: Master of Science thesis, Oregon State University, Corvallis, Oregon.Google Scholar
  22. Carstea, D. D. (1967) Formation and Stability of Al, Fe, and Mg Interlayers in Montmorillonite and Vermiculite. Unpublished Ph.D. thesis, Oregon State University, Corvallis, Oregon. 117 pp.Google Scholar
  23. Clark, J. S. (1964a) Aluminum and iron fixation in relation to exchangeable hydrogen in soils: Soil Sci. 98, 302–306.Google Scholar
  24. Clark, J. S. (1964b) Some cation-exchange properties of soils containing free oxides: Can. J. Soil Sci. 44, 203–211.Google Scholar
  25. Clark, J. S., Brydon, J. E., and Farstad, L. (1963) Chemi-cal and clay mineralogical properties of the Concretionary Brown Soils of British Columbia, Canada: Soil Sci. 95, 344–352.Google Scholar
  26. Clark, J. S. and Nichol (1965) The lime potential-percent base saturation relations of acid surface horizons of mineral andorganic soils: Can. J. Soil Sci. 46, 281–285.Google Scholar
  27. Coleman, N. T., Ragland, J. L., and Craig, D. (1960) An unexpected reaction between Al-Clay or Al-Soil CaCl2: Soil Sci. Soc. Am. Proc. 24, 419–420.Google Scholar
  28. Coleman, N. T. (1962) Decomposition of clay s and the fate of aluminum: Econ. Geol. 57, 1207–1218.Google Scholar
  29. Coleman, N. T., and Thomas, G. W. (1964) Buffer curves of acid clays as affected by the presence of ferrie iron and aluminum: Soil Sci. Soc. Am. Proc. 28, 187–190.Google Scholar
  30. Coleman, N. T., Thomas, G. W., Le Roux, F. H., and Bredell, G. (1964) Salt exchangeable and titratable acidity in bentonite-sequioxide mixtures: Soil S ci. Soc. Am. Proc. 28, 35–37.Google Scholar
  31. Cotton, S. B. (1965) Hydrolysis of Aluminum in Syn-thetic Cation Exchange Resins and Dioctahedral Vermiculite: Unpublished Ph.D thesis, Virginia Polytechnic Institute, Blacksburg, Virginia. 200 pp.Google Scholar
  32. De Villiers, J. M., and Jackson, M. L. (1967) Cation exchange capacity variations with pH in soil clays: Soil Sci. Soc. Am. Proc. 31, 473–477.Google Scholar
  33. Dion, H. G. (1944) Iron oxide removal from clays and its influence on the base-exchange properties and X-ray diffraction pattern of clays: Soil Sci. 58, 411–424.Google Scholar
  34. Dixon, J. B., and Jackson, M. L (1959) Dissolution of interlayers from intergradient soil clays after preheatingat 400°C: Science 129, 1616–1617.Google Scholar
  35. Dixon, J. B., and Jackson, M. L. (1960) Mineralogical analysis of soil clays involving vermiculite-chlorite-kaolinite differentiation: Clays and Clay Minerals, Pergamon Press, New York, 8, 274–286.Google Scholar
  36. Dixon, J. B., and Jackson, M. L. (1962) Properties of intergradient chlorite-expansible layer silicates of soils: Soil Sci. Soc. Am. Proc. 26, 358–362.Google Scholar
  37. Douglas, L. A. (1965) Clay mineralogy of a Sassafras soil in New Jersey: Soil Sci. Soc. Am. Proc. 29, 163–167.Google Scholar
  38. Droste, J. B. (1956) Alteration of clay minerais by weathering in Wisconsin tills; Bull. Geol. Soc. Am. 67, 911–918.Google Scholar
  39. Eggleton, R. A., and Bailey, S. W. (1967) Structural aspects of dioctahedral chlorite: Am. Mineralogist 52, 673–689.Google Scholar
  40. Frink, C. R. (1965) Characterization of aluminum interlayers in soil clays: Soil Sci. Soc. Am. Proc. 29, 379–382.Google Scholar
  41. Frink, C. R., and Peech, M. (1963) Hydrolysis and exchange reactions of the aluminum ion in hectorite and montmorillonite suspensions: Soil Sci. Soc. Am. Proc. 27, 527–530.Google Scholar
  42. Fripiat, J. J., Chaussidon, J., and Touillaux, R. (1960) Study of dehydration of montmorillonite and vermiculite by infrared spectroscopy: J. Phys. Chem. 64, 1234–1241.Google Scholar
  43. Fripiat, J. J., Van Cauwelaert, F., and Bosmans, H. (1965) Structure of aluminum cations in aqueous solutions: J. Phys. Chem. 69, 2458–2461.Google Scholar
  44. Gastuche, M. C, and Herbillon, A. (1962) Étude des gels d’alumine: Crystallisation in milieu desione: Bull. Soc. Chini., France, 1402–1412.Google Scholar
  45. Girod, J., and Lacroix, J. (1960) Influence de l’acidite’ sur les movements de l’ aluminium dans un mélange d’argiles: C. R. Acad. Sci., Paris, 250, 4182–4183.Google Scholar
  46. Glass, H. D. (1958) Clay mineralogy of Pennsylvanian sediments in southern Illinois: Clays and Clay Minerals Nati. Acad. Sci., Natl. Res. Council Publ. 566, 227–241.Google Scholar
  47. Glenn, R. C. (1960) Chemical weathering of layer silicate minerais in loess-derived Loring silt loam of Mississippi: Trans. 7th Intern. Congr. Soil Sci. 7, 523–532.Google Scholar
  48. Glenn, R. C, Jackson, M. L., Hole, F. D., and Lee, G. B. (1960) Chemical weathering of layer silicate clays in loess-derived Tama silt loam of southwestern Wiscon-sin: Clays and Clay Minerals, Pergamon Press, New York, 8, 63–83.Google Scholar
  49. Glenn, R. C., and Nash, V. E. (1964) Weathering relation-ships between gibbsite, kaolinite, chlorite, and expansible layer silicates in selected soils from the lower Miss. Coastal Plain: Clays and Clay Minerals, Pergamon Press, New York, 12, 529–548.Google Scholar
  50. Griffin, M., and Ingram, R. L. (1955) Clay minerais of the Neuse River estuary: J. Sediment. Petrol. 25, 194–200.Google Scholar
  51. Grim, R. E., and Johns, W. D. (1954) Clay mineral investigation of sediments in the northern Gulf of Mexico: Clays and Clay Minerals, Natl. Acad. Sci. —Natl. Res. Council Publ. 327, 81–103.Google Scholar
  52. Grim, R. E., and Loughnan, F. C. (1962) Clay minerais in sediments from Sydney Harbour, Australia: J. Sediment. Petrol. 32, 240–248.Google Scholar
  53. Hathaway, John C. (1955) Studies on some vermiculitetype clay minerais: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council. Publ. 395, 74–86.Google Scholar
  54. Hayashi, H., and Oinuma (1964) Aluminian chlorite from Kamikita mine, Japan: Clay Sci. News Ed. 2, 22–30.Google Scholar
  55. Hsu, Pa Ho (1966) Formation of gibbsite from aging hydroxy-aluminum solutions: Soil Sci. Soc. Am. Proc. 30, 173–176.Google Scholar
  56. Hsu, Pa Ho, and Rich, C. I. (1960) Aluminum fixation in a synthetic cation exchanges: Soil Sci. Soc. Am. Proc. 24, 21–25.Google Scholar
  57. Hsu, Pa Ho, and Bates, T. F. (1964a) Fixation of hydroxy-aluminum polymers by vermiculite: Soil Sci. Soc. Am. Proc. 28, 763–969.Google Scholar
  58. Hsu, Pa Ho, and Bates, T. F. (1964b) Formation of X-ray amorphous and crystalline aluminum hydroxides: Mineral. Mag. 33, 749–768.Google Scholar
  59. Huang, P. M., and Jackson, M. L. (1966) Fluoride inter-action with clays in relation to third buffer range: Nature 211, 779–780.Google Scholar
  60. Jackson, M. L. (1959) Frequency distribution of clay minerais in major great soil groups as related to the factors of soil formation: Clays and Clay Minerals, Pergamon Press, New York, 6, 133–143.Google Scholar
  61. Jackson, M. L. (1960) Structural role of hydronium in layer silicates during soil genesis: Trans. 7th Int. Congr. Soil Sci. 2, 445–455.Google Scholar
  62. Jackson, M. L. (1963a) Interlayering of expansible layer silicates in soils by chemical weathering: Clays and Clay Minerals, Pergamon Press, New York, 11, 29–46.Google Scholar
  63. Jackson, M. L. (1963) Aluminum bonding in soils: A unifying principle in soil science: Soil Sci. Soc. Am. Proc. 27, 1–10.Google Scholar
  64. Jackson, M. L. (1965) Clay transformation in soil genesis during the Quaternary: Soil Sci. 99, 15–22.Google Scholar
  65. Jackson, M. L., Whittig, L. D., Vanden Heuvel, R. C, Kaufman, A., and Brown, B. E. (1954) Some analyses of soil montmorin, vermiculite, mica, chlorite and interstratified layer silicates: Clays and Clay Minerais, Natl. Acad. Sci., Natl. Res. Council Publ. 327, 218–240.Google Scholar
  66. Jeffries, C. D., Rolfe, B. N., and Kunze, G. W. (1953) Mica weathering sequence in the Highfield and Chester soil profiles: Soil Sci. Soc. Am. Proc. 17, 337–339.Google Scholar
  67. Johnson, L. G., and Jeffries, C. D. (1957) The effect of drainage on the weathering of the clay minerais in the Allenwood Catena of Pennsylvania: Soil Sci. Soc. Am. Proc. 21, 539–542.Google Scholar
  68. Jones, L. H. P., Milne, A. A., and Attiwill, P. M. (1964) Dioctahedral vermiculite and chlorite in highly weath-ered red loams in Victoria Australia: Soil Sci. Soc. Am. Proc. 28, 108–113.Google Scholar
  69. Kaddah, M., and Coleman, N. T. (1967) Salt displacement of acid-treated trioctahedral vermiculites: Soil Sci. Soc. Am. Proc. 31, 333–336.Google Scholar
  70. Kawasaki, H., and Aomine, S. (1964) Influence of pH on the formation of the hydroxy-Al-montmorillonite complex: Soil Sci. Plant Nutr. 10, 117–183.Google Scholar
  71. Kawaski, H., and Aomine, S. (1965) Hydroxy-Al complexes of montmorillonite and vermiculite and identifi-cation of intergrades of montmorillonite-chlorite and vermiculite-chlorite: Soil Sci. Plant Nutr. 11, 24–29.Google Scholar
  72. Klages, M. G., and White, J. L. (1957) A chlorite-like mineral in Indiana soils: Soil Sci. Soc. Am. Proc. 21, 16–20.Google Scholar
  73. Koizumi, M., and Roy, R. (1959) Synthetic montmorillonoids with variable exchange capacity: Am. Mineralogist 44, 788–805.Google Scholar
  74. Krebs, R. D., and Tedrow, J. C. F. (1957) Genesis of three soils derived from Wisconsin till in New Jersey: Soil Sci. 83, 207–218.Google Scholar
  75. Kuron, H., Preuse, U. A., and Föhrenbacker, H. U. (1961) Kolloid-chemische und tonmineralogische Untersuchungen an zwei Profilen der Wesermarsch: Z. Pflanzenernähr. DÜng. Boden. 92, 233–247.Google Scholar
  76. Leith, C. J., and Craig, R. M. (1965) Mineralogic trends induced by deep residual weathering: Am. Mineralogist 50, 1957–1970.Google Scholar
  77. Le Roux, J., and de Villiers, J. M. (1965) The contribution of hydronium and aluminum ions to acidity in some Natal soils: S. Afr. J. Agri. Sci. 8, 1079–1090.Google Scholar
  78. Longeut-Escard, J. (1950) Fixation des hydroxydes par la montmorillonite: Trans 4th Intern. Congr. Soil Sci. 3, 40–44.Google Scholar
  79. Loughnan, F. C., Grim, R. D., and Vernet, J. (1962) Weathering of some Triassic shales in the Sydney area: J. Geol. Soc. Australia 8, 245–257.Google Scholar
  80. Lynn, W. C, and Whittig, L. D., (1966) Alternation and formation of clay minerais during cat clay formation: Clays and Clay Minerals, Pergamon Press, New York, 14, 241–248.Google Scholar
  81. MacEwan, D. M. C. (1950) Some notes on the recording and interpretation of X-ray diagrams of soil clays: J. Soil Sci. 1, 90–103.Google Scholar
  82. Mathieson, A. M., and Walker, G. F. (1954) Crystal structure of mangesium-vermiculite: Am. Mineralogist 39, 231–255.Google Scholar
  83. Matsui, T., and Totani, M. (1963) Studies on some fractions of vermiculite clay separates from Japanese soils: Clay Sci. 1, 155–166.Google Scholar
  84. Muller, G. (1961) Vorläufige Mulleilung Über ein neues dioktaedrisches Phyllosilikat der Chlorite-Gruppe: Neues Jahrb. Mineral. Monatsh., 112–120.Google Scholar
  85. Müller, G. (1963) Zur Kenntnis dioktaedriser Vierschict-phyllosilikate (Sudoit-Reihe der Sudoit-Chlorit-Gruppe): Proc. Intern. Clay Conf., Stockholm, Pergamon Press, New York, 121–130.Google Scholar
  86. Nash, V. E. (1963) Chemical and mineralogical property of an Orangeburg profile: Soil Sci. Soc. Am. Proc. 27, 688–693.Google Scholar
  87. Nelson, B. W. (1960) Clay mineralogy of the bottom sediments, Rappahannock River, Virginia: Clays and Clay Minerals, Pergamon Press, New York, 7, 135–147.Google Scholar
  88. Nelson, B. S. (1963) Clay minerai diagenesis in the Rappahennock estuary: an explanation: Clays and Clay Minerals, Pergamon Press, New York, 11, p. 210.Google Scholar
  89. Page, A. L., and Whittig, L. D. (1961) Iron absorption by montmorillonite Systems: II. Determination of adsorb-ed iron: Soil Sci. Soc.Am. Proc. 25, 282–286.Google Scholar
  90. Paver, H., and Marshall, C. E. (1934) The role of aluminum in the reactions of the clays: J. Soc. Chem. Ind. 53, 750–760.Google Scholar
  91. Puwluk, S. (1963) Characteristics of 14 Å clay minerais in the B horizons of podzolized soils of Alberta: Clays and Clay Minerals, Pergamon Press, New York, 11, 74–82.Google Scholar
  92. Pearson, R. W., and Ensminger, L. E. (1949) Types of clay minerais in Alabama soils: SoilSci. Soc.Am. Proc. 13, 153–156.Google Scholar
  93. Poncelet, G. M., and Brindley, G. W. (1967) Experimental formation of kaolinite from montmorillonite at low temperatures: Am. Mineralogist 52, 1161–1173.Google Scholar
  94. Post, D. F., and White, J. L. (1967) Clay mineralogy and mica-vermiculite layer charge density distribution in the Switzerland soils of Indiana: Soil Sci. Soc. Am. Proc. 31, 419–424.Google Scholar
  95. Powers, M. C. (1954) Clay diagenesis in the Chesapeake Bay area: Clays and Clay Minerais, Natl. Acad. Sci., Natl. Res. Council Publ. 327, 68–80.Google Scholar
  96. Powers, M. C. (1959) Adjustment of clays to chemical change and the concept of the equivalence level: Clays and Clay Minerals, Pergamon Press, New York, 6, 42–60.Google Scholar
  97. Quigley, F. M., and Martin, R. T. (1963) Chloritized weathering products of a New England glacial till: Clays and Clay Minerals, Pergamon Press, New York, 10, 107–116.Google Scholar
  98. Ragland, J. L., and Coleman, N. T. (1960) The hydrolysis of aluminum salts in clay and soil Systems: Soil Sci. Soc. Am.Proc. 24, 457–460.Google Scholar
  99. Reuter, G., and Menning, P. (1964) Tonminerale in Staunässeboden Wissenschaftliche: Z. Universitat Rostoch, Math. -Nat. Reihe. 4, 573–582.Google Scholar
  100. Reuter, G., and Menning, P. (1965) Ergebnisse der Differentialthermoalyse bei der Untersuchung von Staunässeböden auf Jungpleistozänanen Sedimenten: First Intern. Thermal Analysis Conf., Aberdeen, Scotland, 232–233.Google Scholar
  101. Rich, C. I. (1954) Clay minerais in Tatum silt loam soil: Virginia J. Sci. 5, p. 300.Google Scholar
  102. Rich, C. I. (1960a) Aluminum in interlayers of vermiculite: Soil Sci. Soc.Am. Proc. 24, 26–32.Google Scholar
  103. Rich, C. I. (1960b) Ammonium fixation by two Red-Yellow Podzolic soils as influenced by interlayer-Al in clay minerais: Trans. 7th Int. Congr. Soil Sci. 4, 468–475.Google Scholar
  104. Rich, C. I. (1962) Removal of excess salt in cation ex-change capacity determinations: Soil Sci. 93, 87–94.Google Scholar
  105. Rich, C. I. (1966) Concentration of dioctahedral mica and vermiculite using a fluoride solution: Clays and Clay Minerals, Pergamon Press, New York, 14, 91–98.Google Scholar
  106. Rich, C. I., and Obenshain, S. S. (1955) Chemical and clay minerai properties of a Red-Yellow Podzolic soil derived from muscovite schist: Soil Sci. Soc.Am. Proc. 19, 334–331.Google Scholar
  107. Rich, C. I., and Cook, M. G. (1963) Formation of diocta-hedral vermiculite in Virginia soils: Clays and Clay Minerals, Pergamon Press, New York, 10, 96–106.Google Scholar
  108. Rich, C. I., and Black, W. R. (1964) Potassium exchange as affected by cation size, pH, and mineral structure: Soil Sci. 97, 384–390.Google Scholar
  109. Sand, L. B. (1956) On the genesis of residual kaolins: Am. Mineralogist 41, 28–40.Google Scholar
  110. Sawhney, B. L. (1960a) Aluminum interlayers in clay minerais, montmorillonite and vermiculite: laboratory synthesis: Nature 187, 261–262.Google Scholar
  111. Sawhney, B. L. (1960b) Weathering and aluminum interlayers in a soil catena: Hollis-Charlton-Sutton-Leicester. Soil Sci. Soc.Am. Proc. 24, 221–226.Google Scholar
  112. Sawhney, B. L. (1960c) Aluminum interlayers in clay: Trans. 7th Int. Congr. Soil Sci. 4, 476–481.Google Scholar
  113. Sayegh, A. H., Harward, M. E., and Knox, E. G. (1965) Humidity and temperature interactions with respect to K-saturated expanding clay minerais: Am. Mineralo-gist 50, 490–495.Google Scholar
  114. Scheffer, F., Meyer, B., and Tölster, U. H. (1961) Dreischicht-Tonminerale mit Aluminum Zwischen-schichtbelegung in mitteldeutschen sauren Braunen Waldböden: Z. Pflanzenerähr., DÜng., Bodenk. 92, 201–207.Google Scholar
  115. Schofield, R. K. (1946) Factors influencing ion exchange in soils: Soils and Fertilizers 9, 265.Google Scholar
  116. Schwertmann, U. (1961) Der Mineralbestand der Fraktion < 2μ einiger Böden aus Sedimenten und seine Eigen-schaften: Z. Pflanzenernähr., Düng., Bodenk. 95, 209–227.Google Scholar
  117. Schwertmann, U., and Jackson, M. L. (1963) Hydrogen-aluminum clays: a third buffer range appearing in Potentiometrie titration: Science 139, 1052–1053.Google Scholar
  118. Schwertmann, U., and Jackson, M. L. (1964) Influence of hydroxy aluminum ions on pH titration curves of hydronium-aluminum clays: Soil Sci. Soc.Am. Proc. 28, 179–183.Google Scholar
  119. Shen, Mu Ju, and Rieh, C. I. (1962) Aluminum fixation in montmorillonite: Soil Sci. Soc. Am. Proc. 26, 33–36.Google Scholar
  120. Shirozu, H. and Bailey, S. W. (1966) Crystal structure of a two-layer Mg-vermiculite: Am. Mineralogist 51, 1124–1143.Google Scholar
  121. Singleton, P. G. (1965) Nature of interlayer materials in Silicate clays of selected Oregon soils: Ph.D. thesis, Oregon State University, Corvallis, Oregon.Google Scholar
  122. Slaughter, M., and Milne, I. H. (1960) The formation of chlorite-like structures from montmorillonite: Clays and Clay Minerals, Pergamon Press, New York, 7, 114–124.Google Scholar
  123. Spyridokis, D. E., Chesters, G., and Wilde, S. A. (1967) Kaolinization of biotite as a resuit of coniferous seedling growth: Soil Sci. Soc. Am. Proc. 31, 203–209.Google Scholar
  124. Stephen, I. (1952) A study of rock weathering with reference to the soils of the Malvern Hills II. Weathering of appinite and “ivy-scar rock”: J. Soil Sci. 3, 219–237.Google Scholar
  125. Stephen, I., and MacEwan, D. M. C. (1951) Some chloritic clay minerais of unusual type: Clay Minerals Bull, 1, 157–162.Google Scholar
  126. Sudo, Toshio (1963) Interstratified minerais from Japan, their geological behaviors and origins: Proc. Intern. Clay Conf., Stockholm, Pergamon Press, New York, 113–120.Google Scholar
  127. Sudo, T., and Hayaski, H. (1956) Types of mixed-layer minerais from Japan: Clays and Clay Minerals, Natl. Acad. Sci. Natl. Res. Council Publ. 456, 389–412.Google Scholar
  128. Tamura, T. (1956) Weathering of mixed layer clays in soils: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Publ. 456, 413–422.Google Scholar
  129. Tamura, T. (1957) Identification of the 14 Å clay mineral component: Am. Mineralogist 42, 107–110.Google Scholar
  130. Tamura, T. (1958) Identification of clay minerals from acid soils: J. Soil Sci. 9, 141–147.Google Scholar
  131. Tamura, T., Hanna, R. M., and Shearin, A. E. (1959) Properties of Brown Podzolic soils: Soil Sci. 87, 189–197.Google Scholar
  132. Thomas, G. W. (1960) Forms of aluminum in cation exchangers: Trans. 7th Intern. Congr. Soil Sci. 2, 364–369.Google Scholar
  133. Treadwell, W. D. (1931) Über ein basiches Aluminum-chlorid: Helv Chim. Acta 14, 473–481.Google Scholar
  134. Turner, R. C. (1965) A study of the lime potential 4. The lime potential during titration of Wyoming bentonite originally saturated with ferrie ions: Soil Sci. 99, 88–92.Google Scholar
  135. Turner, R. C., Nichol, W. E., and Brydon, J. E. (1963) A study of the lime potential 3: Soil Sci. 95, 186–191.Google Scholar
  136. Turner, R. C., and Brydon, J. E. (1965) Factors affecting the solubility of Al(OH)3 precipitated in the presence of montmorillonite: Soil Sci. 100, 176–181.Google Scholar
  137. Turner, R. C., and Brydon, J. E. (1967) Effect of length of time of reaction on some properties of suspensions of Arizona bentonite, illite, and kaolinite in which aluminum hydroxide is precipitated: Soil Sci. 103, 111–117.Google Scholar
  138. Van der Marel H. W. (1964) Identification of chlorite and chlorite-related minerais in sediments: Beitn. Miner. Petrog. 9, 462–480.Google Scholar
  139. Volk, V. V., and Jackson, M. L. (1964) Inorganic pH dependent cation exchange charge in soils: Clays and Clay Minerals, Pergamon Press, New York, 12, 218–295.Google Scholar
  140. Weed, S. B., and Nelson, L. A. (1962) Occurrence of chlorite-like intergrade clay minerais in Coastal Piain, Piedmont and mountain soils of North Carolina: Soil Sci. Soc. Am. Proc. 26, 393–398.Google Scholar
  141. Weiss, A. (1963) Mica-type layer silicates with alkylamo-nium ions: Clays and Clay Minerals, Pergamon Press, New York, 10, 191–224.Google Scholar
  142. Weiss, Armin, Härbich, A., and Weiss, Alarich (1964) Einige Eigenshaften der 1. bis 4. Wasserschicht in guellungs-fähigen Schichtsilikaten: Ber. Deut. Keram. Ges. 41, 687–690.Google Scholar
  143. Weissmiller, R. A., Ahlrichs, J. L., and White, J. L.(1967) Infrared studies of hydroxy aluminum interlayer material. Soil Sci. Soc. Am. Proc. 31, 459–463.Google Scholar
  144. Whitehouse, V. G., and McCarter R. S. (1958) Diagenetic modification of clay mineral types in artiflcial sea water: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Publ. 566, 81–119.Google Scholar
  145. Whittig, L. D. (1959) Characteristics and genesis of a Solodized-Solonetz of California: Soil Sci. Soc. Am. Proc. 23, 469–473.Google Scholar
  146. Wilson, M. J. (1966) The weathering of biotite in some Aberdeenshire soils: Mineral. Mag. 35, 1080–1093.Google Scholar

Copyright information

© Clay Minerals Society 1968

Authors and Affiliations

  • C. I. Rich
    • 1
  1. 1.Agronomy DepartmentVirginia Polytechnic InstituteBlacksburgUSA

Personalised recommendations