Advertisement

Clays and Clay Minerals

, Volume 14, Issue 1, pp 367–383 | Cite as

Low-Frequency (OH) Motions in Layer Silicate Minerals

  • A. W. Naumann
  • G. J. Safford
  • F. A. Mumpton
General

Abstract

Neutron inelastic scattering spectra for kaolinite, dickite, pyrophyllite, and muscovite show a characteristic peak between 850 and 910 cm−1, while those for chrysotile, antigorite, talc, phlogopite, and amphibole minerals show characteristic peaks at 620–650 cm−1 and 460–510 cm−1. These peaks correspond to localized torsional oscillations of (OH) groups. Lower-frequency peaks are also observed and are associated with optical and acoustic modes involving hindered translations. Within a series, the similarity in the shapes and the positions of the peaks indicates that the motions of the (OH) groups are determined primarily by nearest-neighbor cation coordination. Differences between the two series can be attributed to the different environments when the octahedral layer of the lattice is populated either by two or by three cations.

The spectra of the hydrated minerals, montmorillonite, hectorite, and halloysite, show lines characteristic of liquid water. Upon dehydration, peaks corresponding to the motions of structural (OH) units are observed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassett, W. A. (1960) Role of hydroxyl orientation in mica alteration, Bull. Geol. Soc. Amer. 71, 449–56.CrossRefGoogle Scholar
  2. Bauman, R. P. (1962) Absorption Spectroscopy, J. Wiley, New York, 611 pp.Google Scholar
  3. Brockhouse, B. N. (1961) Methods for neutron spectrometry, in Proc. Symposium Inelastic Scattering Neutrons in Solids and liquids, International Atomic Energy Agency, Vienna, Austria 1, 113–51.Google Scholar
  4. Buchanan, R. A., Kinsey, E. L., and Caspers, H. H. (1962) Infrared absorption spectra of LiOH and LiOD, Jour. Chem. Phys. 36, 2665–75.CrossRefGoogle Scholar
  5. Danner, H. R., Safford, G. J., Boutin, H., and Berger, M. (1964) Study of low-frequency motions in polyethylene and the paraffin hydrocarbons by neutron inelastic scattering, Jour. Chem. Phys. 40, 1417–25.CrossRefGoogle Scholar
  6. Eisenhauer, C. M., Pelah, I., Hughes, D. J., and Palevosky, H. (1958), Measurements of lattice vibrations in vanadium by neutron scattering, Phys. Rev. 109, 1046–51.CrossRefGoogle Scholar
  7. Farmer, V. C. (1958), The infrared spectra of talc, saponite, and hectorite, Min. Mag. 31, 829–45.Google Scholar
  8. Graham, J., Walker, G. F., and West, G. W. (1964) Nuclear magnetic resonance study of interlayer water in hydrated layer silicates, Jour. Chem. Phys. 40, 540–50.CrossRefGoogle Scholar
  9. Hexter, R. M. (1958) On the infrared absorption spectra of crystalline brucite [Mg(Oh)2] and portlandite [Ca)Oh)2], Jour. Opt. Soc. Amer., 48, 770–4.CrossRefGoogle Scholar
  10. Hughes, D. J., and Schwartz, R. B. (1958) Neutron Cross Sections, 2nd ed., BNL-325, Brookhaven National Laboratory, Upton, New York.Google Scholar
  11. Kothari, L. S., and Singwi, K. S. (1959) Interaction of thermal neutrons with solids, Solid State Phys. 8, 109–90.CrossRefGoogle Scholar
  12. Pimental, G. C., and McClellan, A. L. (1960) The Hydrogen Bond, W. H. Freeman, San Francisco, 475 pp.Google Scholar
  13. Pines, D. (1963) Elementary Excitation in Solids, W. A. Benjamin, New York, 299 pp.Google Scholar
  14. Radoslovich, E. W. (1960) The structure of museovite, KAl2(Si2Al)O10(OH)2, Acta Crysl. 13, 919–32.CrossRefGoogle Scholar
  15. Safford, G. J., Brajovic, V., and Boutin, H. (1963) in Investigation of the energy levels in alkaline earth hydroxides by inelastic scattering of slow neutrons, Jour. Phys. Chem. Solids 24, 771–7.CrossRefGoogle Scholar
  16. Safford, G. J. and Lo Sacco, F. J. (1965) A study of the low-frequency motions of LiOH by neutron inelastic scattering, Submitted to Jour. Chem. Phys.Google Scholar
  17. Saksena, B. D. (1961) Infrared absorption studies of some silicate structure, Trans. Faraday Soc. 57, 242–58.CrossRefGoogle Scholar
  18. Stubican, V. and Roy, R. (1961) A new approach to assignment of infrared absorption bands in layer-structure silicates, Zeit. Krist. 115, 200–14.CrossRefGoogle Scholar
  19. Vedder, W. (1964) Correlations between infrared spectrum and chemical composition of mica, Amer. Min. 49, 736–68.Google Scholar
  20. Vedder, W. and Mcdonald, R. S. (1963), Vibrations of the Oh ions in muscovite, Jour. Chem. Phys. 38, 1583–90.CrossRefGoogle Scholar
  21. Wickersheim, K. A. (1959) Infrared absorption spectrum of lithium hydroxide, Jour. Chem. Phys. 31, 863–9.CrossRefGoogle Scholar
  22. Wyckoff, R. W. G. (1963) Crystal Structures, 2nd ed., 1, Interscience Publishers, New York, 467 pp.Google Scholar

Copyright information

© Clay Minerals Society 1966

Authors and Affiliations

  • A. W. Naumann
    • 1
  • G. J. Safford
    • 1
  • F. A. Mumpton
    • 1
  1. 1.Union Carbide Corporation, Sterling Forest, Research CenterTuxedoUSA

Personalised recommendations