Clays and Clay Minerals

, Volume 11, Issue 1, pp 252–267 | Cite as

Clay Mineral Effects on the Stress-Strain Response of Soils in Direct Shear

  • Robert L. Kondner
  • José R. VendrellJr.
General Session


More than one hundred sets of direct shear tests were conducted on soils composed of four reference clay minerals and various combinations of the four clay minerals of the Columbia University Clay Mineral Standards Project (A.P.I. 49) to illustrate with quantitative results the influence of clay mineralogy on the stress-strain characteristics of soils and hence the practical importance of clay mineralogy in soil mechanics. The soils tested consisted of various amounts by weight of Bedford Indiana Halloysite, Mesa Alta New Mexico Kaolinite, Santa Rita New Mexico Montmorillonite and Fithian Illinois Illite prepared with distilled water. The experimental results agree quite well with hyperbolic stress-strain relations previously developed by the author. The Hvorslev strength parameters are written as exponential functions of the clay mineral content and arc included in the hyperbolic stress-strain law. The ultimate shear strength of the soils are mathematically expressed in terms of the stress history, confinement, and mineralogy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.S.T.M. (1952) Symposium on direct shear testing of soils, S.T.P. No. 131, 87 pp.Google Scholar
  2. Bates, T. F., Hildebrand, F. A., and Swineford, A. (1950) Morphology and structure of endellite and halloysite, Amer. Min., v.35, pp.463–484.Google Scholar
  3. Coulomb, C. A. (1776) Essai sur une application des règles de maximis et minimis à quelques problemes de statique, relatifs à l’architecture: Mémoirs de l’Académie des Sciences (Savants Etrangers) v.7, pp.343–382.Google Scholar
  4. Grim, R. E. (1953) Clay Mineralogy, McGraw-Hill, New York, 384 pp.CrossRefGoogle Scholar
  5. Hvorslev, M. J. (1960) Physical components of the shear strength of saturated clays, A.S.C.E. Research Conference on Shear Strength of Cohesive Soils, pp.169–273.Google Scholar
  6. Kerr, P. F., and Kulp, J. L. (1949) Reference clay localities—United States: Amer. Petroleum Inst., Project 49, Report No. 2, Columbia University, 103 pp.Google Scholar
  7. Kerr, P. F., and Hamilton, P. K. (1949) Glossary of Clay mineral names: Amer. Petroleum Inst., Project 49, Report No. 1, Columbia University, 68 pp.Google Scholar
  8. Kerr, P. F., et al. (1950) Analytical data on reference clay minerals: Amer. Petroleum Inst., Project 49, Report No. 7, Columbia University, 160 pp.Google Scholar
  9. Kerr, P. F. (1959) Discussion, Physico-chemical properties of soils: clay minerals, J. Soil Mechanics and Foundations Division, A.S.C.E., v.85, pp.73–78.Google Scholar
  10. Kondner, R. L. (1962a) Friction pile groups in cohesive soil, J. Soil Mechanics and Foundations Division, A.S.C.E., v.88, pp.117–149.Google Scholar
  11. Kondner, R. L. (1962b) Hyperbolic stress-strain relation in direct shear, to be submitted for publication.Google Scholar
  12. Kondner, R. L., and Krizek, R. J. (1962) Correlation of load bearing tests on soils, Proc. H.R.B., v.41. pp.557–590.Google Scholar
  13. Kondner, R. L., Krizek, R. J., and Schimming, B. B. (1962) Lateral stability of rigid poles subjected to an applied couple, to be submitted for publication, 36 pp.Google Scholar
  14. Terzaghi, K., (1938) Die coulombsche gleichung für scherwiderstand bindiger böden, Die Bautechnik, v.16, pp.343–346.Google Scholar
  15. Terzaghi, K., (1943) Theoretical Soil Mechanics, John Wiley, New York, 510 pp.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1962

Authors and Affiliations

  • Robert L. Kondner
    • 1
  • José R. VendrellJr.
    • 1
    • 2
  1. 1.The Technological InstituteNorthwestern UniversityEvanstonUSA
  2. 2.PoncePuerto RicoUSA

Personalised recommendations