Advertisement

Clays and Clay Minerals

, Volume 11, Issue 1, pp 84–94 | Cite as

Solid-Gas Interface in Weathering Reactions

  • Cooper H. Wayman
Symposium on Clay Mineral Transformation

Abstract

Most weathering reactions have been interpreted in terms of the solid-liquid interface. In dry climates or at low humidity, weathering might be initiated or controlled by a solid-gas reaction. The stability of gibbsite and some hydrous borates involves the activity of water vapor; and the stability of azurite depends on a ratio of the partial pressures of both water vapor and carbon dioxide. Much additional work is required on the rates of equilibrium dehydration to contribute to our knowledge of the solid-gas interface in weathering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, L. T., Hendricks, S. B., and Faust, G. T. (1941) Occurrence of gibbsite in some soil forming minerals: Soil Sci. Soc. Amer. Proc, v.6, p.52.CrossRefGoogle Scholar
  2. Allen, V. T. (1948) Formation of bauxite from basaltic rocks of Oregon: Econ. Geol., v.43, p.619.CrossRefGoogle Scholar
  3. Bishopp, D. W. (1955) Bauxite resources of British Guiana: British Guiana Geol. Survey Bull. No.26, p.1.Google Scholar
  4. Bureau of Standards (1952) Selected values of chemical thermodynamic values: Circular 500, p.319.Google Scholar
  5. Chirvinskii, P. N. (1940) Gibbsite in platy crystals in bauxite: Mem. Soc. Busse Minéral, v.69, p.41.Google Scholar
  6. Christ, C. L., and Garrels, K. M. (1959) Relations among sodium borate hydrates at the Kramer deposit, Boron, California: Amer. J. Sci., v.257, pp.516–528.CrossRefGoogle Scholar
  7. De Ravol, R. (1953) Contributions to the study of bauxite of Plain of Pocas de Caldas: Inst. Tech. Publ. Sao Paulo, Brazil, No. 17, p.109.Google Scholar
  8. DeWeisse, J. (1948) Bauxites of Central Europe: Mem. Soc. Sci. Nat., v.58, p.162.Google Scholar
  9. DeWeisse, G. (1954) Some laterite types in Portugese Guiana: Congr. Geol. Interm., Compt. rend. Algiers, v.12, p.183.Google Scholar
  10. Ekrem, G. (1954) Geology and genesis of bauxite deposits in Turkey: Congr. Geol. Intern., Compt. rend., v.12, p.163.Google Scholar
  11. Eyles, V. A. (1952) The composition and origin of the Antrim laterites and bauxites: Gov’t. Northern Ireland, Mem. Geol. Survey, No.18, p.41.Google Scholar
  12. Funaki, K., and Uchimira, K. (1952) The properties of hydrated alumina and alumina. IV. Characteristics of bayerite and gibbsite: J. Chem. Soc. Japan, Ind. Chem. Sect., v.55, pp.51–54.Google Scholar
  13. Gedeon, T. G. (1956) Bayerite in Hungarian bauxite: Acta Geol. Acad. Sci. Hung., v.4, p.95.Google Scholar
  14. Goldich, S., and Bergquist, H. (1947) Aluminous lateritic of Sierra de Bahamco Area Dominican Republic, B.W.I.: U.S. Geol. Survey Bull. 953 C, p.53.Google Scholar
  15. Hardy, F., and Rodriques, G. (1939) Soil genesis from andésite in Grenada, B.W.I.: Soil Sci., v.48, p.361.CrossRefGoogle Scholar
  16. Hill, V. G. (1955) The mineralogy and genesis of bauxite deposits of Jamaica, B.W.I.: Amer. Min., v.40, p.677.Google Scholar
  17. Hose, H. R. (1950) The geology and mineral resources of Jamaica: Colonial Geol. and Mineral Resources, v.1, p.11.Google Scholar
  18. Kiss, J. (1952) Mineralogy and bauxite of Nezsa: Acta Geol. Acad. Sci. Hung., v.1, p.113.Google Scholar
  19. Klute, A. (1960) Water, gas and solute transport theories and their application in drainage research: Paper No. 60–723, Amer. Soc. Agric. Engrs., Winter Meeting, Dec. 4–7, 1960, Memphis, Tenn., p.4.Google Scholar
  20. Kuznetzov, S. N. (1950) Thermodynamic properties of gibbsite and boehmite: J. Appl. Chem. USSB, v.23, pp.1265–1268.Google Scholar
  21. Miholic, S. (1956) Origin of bauxite on L.S.: Berg. u. huttermann Monatsh. Montau Hochschule Leoben, v.101, p.38.Google Scholar
  22. Miralles, J. (1952) Bauxites of N.E. Spain: Congr. Geol. Intern., Compt. rend. Algiers, v.12, p.199.Google Scholar
  23. Nemerz, E. (1954) Iron minerals in bauxite: Acta Geol. Acad. Sci. Hung., v.2, p.257.Google Scholar
  24. Oda, S. (1955) Investigation of Indian bauxites: J. Chem. Soc. Japan, Pure Chem. Sect., v.76, p.209.Google Scholar
  25. Pourbaix, M. (1956) Comportement electrochimique, de l’aluminum. Diagramme d’equilibre tension—pH du system AI-H2O, à 25°C: Centre Belge d’Etude de la Corrosion, Brussels, Tech. Rept. 25, p.4.Google Scholar
  26. Ragatt, H. (1945) Bauxite deposits of Victoria: Australian Min. Res. Survey Bull. No.14, p.26.Google Scholar
  27. Sherman, J. D. (1957) Formation of gibbsite aggregates in latosols developed on volcanic ash: Science, v.125, p.1243.CrossRefGoogle Scholar
  28. Spangenberg, K. S. (1944) The occurrence of bauxites between Siewierz and Tarnouricz, Upper Silesia: Neues Jahrb. Min., Geol. Monatsh, v.152, p.68Google Scholar
  29. Tullet, J. (1951) X-ray analysis of some bauxites of N.E. Spain: Estud, Geol. Inst. “Lucas Mallodas”, v.7, p.113.Google Scholar
  30. Vachtl, J. (1956) The Greek bauxites, their occurrence, age, and mineral composition: Vestnik Ustrednika Ustanes Geol., v.31, p.105.Google Scholar
  31. Van Bavel, C. H. M. (1951) A soil aeration theory based on diffusion: Soil Sci., v.72, pp.33–46.CrossRefGoogle Scholar
  32. Van Kersen, J. F. (1956) Bauxite deposits in Surinam and Demerara (B. G.): Leidsche Geol. Mededeel, v.21, p.247.Google Scholar
  33. Wayman, C. H. (1959) Ph.D. dissertation, Michigan State University, Lansing, Michigan, p.89.Google Scholar
  34. Wayman, C. H. (1961) Hydrate equilibrium in soil profiles: Soil Sci., v.92, pp.322–330.CrossRefGoogle Scholar
  35. Wayman, C. H. (1963) The Malachite-azurite equilibrium in soil profiles: Soil Sci., v.94 (in press).Google Scholar
  36. Wysor, D. C. (1916) Aluminous hydroxides in Arkansas bauxite deposits: Econ. Geol., v.11, p.42.CrossRefGoogle Scholar
  37. Wysor, D. C. (1923) Diaspore clay of Arkansas-Missouri: J. Amer. Ceram. Soc., v.6, p.501.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1962

Authors and Affiliations

  • Cooper H. Wayman
    • 1
  1. 1.U.S. Geological SurveyDenver Federal CenterDenverUSA

Personalised recommendations