Clays and Clay Minerals

, Volume 11, Issue 1, pp 29–46 | Cite as

Interlayering of Expansible Layer Silicates in Soils by Chemical Weathering

  • M. L. Jackson
Symposium on Clay Mineral Transformation


Interlayering of 2: 1 layer silicates varies as a function of chemical weathering from the simple, homogeneous K or Na interlayers of micas to the heterogeneous systems of mica intercalated with expanded 2: 1 layer silicates. “Frayed edge” type of weathering at dislocation planes of mica is collated with K release and preferential cation-exchange uptake of K relative to Ca by such expansible layer silicate systems; mica islands maintain alignment of the silica sheet cavities, which facilitates recapture of lattice K. Intercalation of the expanded 2: 1 layer silicates with alumina interlayers appears to be a characteristic function of chemical weathering in soils, with the formation of 2: 1–2: 2 intergrades not only of 14 Å spacing but also of swelling 18 Å types that give small 12, 14, 18 Å and higher spacing peaks (along with the 10 Å peak) at 550°C. Interlayer precipitates appear to be characteristic of soil clays, contrasting with “pure” minerals of deposits developed in less “open” environments than those of soils. The “2: 2 lattice building” phenomenon in expansible 2: 1 layer silicates relates to layer charge density and crystal size, and frequently tends to inhibit the formation of free gibbsite in soil chemical weathering so long as there are expansible layer silicates present to become intercalated with aluminum hydroxide—a weathering phenomenon that may be called an “antigibbsite effect”. Accumulation of alumina (possibly with some iron, magnesium, and allophane) as interlayers in 2: 1 minerals of soils is seen as a genetic stage in the 2: 2 → 1: 1 weathering sequence through which kaolinite and halloysite develop in soils.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilera, N. H. and Jackson, M. L. (1953) Iron oxide removal from soils and clays: Soil Sci. Soc. Amer. Froc., v.17, pp.359–364, v.18, pp.233 and 350.CrossRefGoogle Scholar
  2. Alexander, L. T., Hendricks, S. B. and Nelson, R. A. (1939) Minerals present in soil colloids II. Estimation in some representative soils: Soil Sci., v.48, pp.273–279.CrossRefGoogle Scholar
  3. Andrew, R. W., Jackson, M. L., and Wada, Koji (1960) Intersalation as a technique for differentiation of kaolinite from chloritic minerals by X-ray diffraction: Soil Sci. Soc. Amer. Proc., v.24, pp.422–424.CrossRefGoogle Scholar
  4. Barshad, I. (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analyses, differential thermal curves, and water content: Amer. Min., v.33, pp.655–678.Google Scholar
  5. Barshad, I. (1960) Significance of the presence of exchangeable magnesium ions in. acidified clays: Science, v.131, pp.988–990.CrossRefGoogle Scholar
  6. Bradley, W. F. (1955) Structural irregularities in hydrous magnesium silicates: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 395, pp.94–102.Google Scholar
  7. Bragg, W. L. (1937) Atomic Structure of Minerals: Cornell Univ. Press, Ithaca, New York, pp.292.Google Scholar
  8. Bray, R. H. (1937) Chemical and physical changes in soil colloids with advancing development in Illinois soils: Soil Sci., v.43, pp.1–14.CrossRefGoogle Scholar
  9. Brindley, G. W. and Gillery, F. H. (1954) A mixed-layer kaolinite-chlorite structure: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 327, pp.349–353.Google Scholar
  10. Brown, B. E. and Jackson, M. L. (1958) Clay-mineral distribution in the Hiawatha sandy soils of northern Wisconsin: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 566, pp.213–226.Google Scholar
  11. Brown, G. (1953) The dioctahedral analogue of vermiculite: Clay Min. Bull., v.2, pp.64–69.CrossRefGoogle Scholar
  12. Brown, G. and Norrish, K. (1952) Hydrous micas: Min. Mag., v.29, pp.929–932.Google Scholar
  13. Brydon, J. E., Clark, J. S., and Osborne, V. (1961) Dioctahedral chlorite: Canadian Min., v.6, pp.595–609.Google Scholar
  14. Correns, C. W. (1961) The experimental chemical weathering of silicates: Clay Min. Bull., v.4, pp.249–265.CrossRefGoogle Scholar
  15. DeMumbrum, L. E. (1959) Exchangeable potassium levels in vermieulite and potassium-depleted micas and implications relative to potassium levels in soils: Soil Sci. Soc. Amer. Proc., v.23, pp.192–194.CrossRefGoogle Scholar
  16. Dixon, J. B. and Jackson, M. L. (1959) Dissolution of interlayers from intergradient soil clays after preheating at 400°C: Science, v.129, pp.1616–1617.CrossRefGoogle Scholar
  17. Dixon, J. B. and Jackson, M. L. (1960) Mineralogical analysis of soil clays involving vermieulite—chlorite—kaolmite differentiation: in Clays and Clay Minerals, 8th Conf., Pergamon Press, pp.274–286.CrossRefGoogle Scholar
  18. Dixon, J. B. and Jackson, M. L. (1962) Properties of intergradient chlorite-expansible layer silicates of soils: Soil Sci. Soc. Amer. Proc, v.26, pp.358–362.CrossRefGoogle Scholar
  19. Droste, J. B. (1956) Alteration of clay minerals by weathering in Wisconsin tills: Geol. Soc. Amer. Bull., v.67, pp.911–918.CrossRefGoogle Scholar
  20. Dyal, R. S. and Hendricks, S. B. (1952) Formation of mixed layer minerals by potassium fixation in montmorillonite: Soil Sci. Soc. Amer. Proc., v.16, pp.45–48.CrossRefGoogle Scholar
  21. Edelman, C. H. and Favejee, J. C. (1940) On the crystal structure of montmorillonite and halloysite: Z. Krist., v. 102, pp.417–431.Google Scholar
  22. Erhart, H. (1956) La genèse des sols en tant que phénomène géologique: Masson et Cie, Paris 6, France.Google Scholar
  23. Ferguson, J. A. (1954) Transformations of clay minerals in black earths and red loams of basaltic origin: Austral. J. Agric. Res., v.5, pp.98–108.Google Scholar
  24. Frederickson, A. F. and Reynolds, R. C., Jr. (1960) Geochemical method for determining paleosalinity: in Clays and Clay Minerals, 8th Conf., Pergamon Press, pp.203–213.CrossRefGoogle Scholar
  25. Glass, H. D. (1958) Clay mineralogy of Pennsylvanian sediments in southern Illinois: in Clays and Clay Minerals, Natl. Acad. Sci.–Natl. Res. Council, pub. 566, pp.227–241.Google Scholar
  26. Glenn, R. C. (1960) Chemical weathering of layer silicate minerals in loess-derived Loring silt loam of Mississippi: Trans. 7th Cong. Int. Soc. Soil Sci., v.4, pp.523–531.Google Scholar
  27. Glenn, R. C., Jackson, M. L., Hole, F. D., and Lee, G. B. (1960) Chemical weathering of layer silicate clays in loess-derived Tama silt loam of southwestern Wisconsin: in Clays and Clay Minerals, 8th Conf., Pergamon Press, pp.63–83.CrossRefGoogle Scholar
  28. Grim, R. E. and Johns, W. D. (1954) Clay mineral investigation of sediments in the northern Gulf of Mexico: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 327, pp.81–103.Google Scholar
  29. Gruner, J. W. (1934) Structure of vermiculites and their collapse by dehydration: Amer. Min., v.19, pp.557–575.Google Scholar
  30. Harrison, J. L. and Murray, H. H. (1959) Clay mineral stability and formation during weathering: in Clays and Clay Minerals, 6th Conf., Pergamon Press, pp.203–213.Google Scholar
  31. Hendricks, S. B. and Teller, E. (1942) X-ray interference in partially ordered layer silicates: J. Chem. Phys., v.10, pp.147–167.CrossRefGoogle Scholar
  32. Hensel, D. R. and White, J. L. (1960) Time factor and the genesis of soils on early Wisconsin till: in Clays and Clay Minerals, 7th Conf., Pergamon Press, pp.200–215.Google Scholar
  33. Hofmann, U., Endell, K., and Wilm, D. (1933) Struktur und quellung von montmorillonit: Z. Krist., v.86, pp.304–348.Google Scholar
  34. Hutcheson, T. B., Jr., Lewis, R. J., and Seay, W. A. (1959) Chemical and clay mineralogical properties of certain Memphis catena soils of western Kentucky: Soil Sci. Soc. Amer. Proc, v.23, pp.474–478.CrossRefGoogle Scholar
  35. Jackson, M. L. (1959) Frequency distribution of clay minerals in major great soil groups as related to the factors of soil formation: in Clays and Clay Minerals, 6th Conf., Pergamon Press, pp.133–143.Google Scholar
  36. Jackson, M. L. (1960) Structural role of hydronium in layer silicates during soil genesis: Trans. 7th Gong. Int. Soc. Soil Sci., v.2, pp.445–455.Google Scholar
  37. Jackson, M. L. (1962) Significance of kaolinite intersalation in clay mineral analysis: in Clays and Clay Minerals, 9th Conf., Pergamon Press, pp.424–429.CrossRefGoogle Scholar
  38. Jackson, M. L. (1963) Aluminium bonding in soils: a unifying principle in soil science: Soil Sci. Soc. Amer. Proc, v.27, pp.1–10.CrossRefGoogle Scholar
  39. Jackson, M. L., Hseung, Y., Corey, R. B., Evans, E. J. and Vanden Heuvel, R. C. (1952). Weathering sequence of clay-size minerals in soils and sediments II. Chemical weathering of layer silicates: Soil Sci. Soc. Amer. Proc, v.16, pp.3–6.CrossRefGoogle Scholar
  40. Jackson, M. L. and Sherman, G. D. (1953) Chemical weathering of minerals in soils: Advances in Agronomy, Academic Press, New York, v.5, pp.219–318.CrossRefGoogle Scholar
  41. Jackson, M. L., Tyler, S. A., Willis, A. L., Bourbeau, G. A. and Pennington, R. P. (1948) Weathering sequence of clay-size minerals in soils and sediments I. Fundamental generalizations: J. Phys. Colloid Chem., v.52, pp.1237–1260.CrossRefGoogle Scholar
  42. Jackson, M. L., Whittig, L. D., and Pennington, R. P. (1950) Segregation procedure for the mineralogical analysis of soils: Soil Sci. Soc. Amer. Proc., v.14, pp.77–81.CrossRefGoogle Scholar
  43. Jackson, M. L., Whittig, L. D., Vanden Heuvel, R. C., Kaufman, A. and Brown, B. E. (1954) Some analyses of soil montmorin, vermiculite, mica, chlorite, and inter-stratified layer silicates: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 327, pp.218–240.Google Scholar
  44. Jasmund, K. and Riedel, D. (1961) Untersuchungen des tonigen Zwisehenmittels im Hauptbuntsandstein der Nordeifel: Bull. Geol. Inst. Univ. Uppsala, v.40, pp.247–257.Google Scholar
  45. Klages, M. G. and White, J. L. (1957) A chlorite-like mineral in Indiana soils: Soil Sci. Soc. Amer. Proc, v.21, pp.16–20.CrossRefGoogle Scholar
  46. Kunze, G. W., Templin, E. H., and Page, J. B. (1955) The clay mineral composition of representative soils from five geological regions of Texas: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 395, pp.373–383.Google Scholar
  47. Loughnan, F. C., Grim, R. E., and Vernet, J. (1962) Weathering of some Triassic shales in the Sydney area: J. Geol. Soc. Austral., v.8, pp.245–257.CrossRefGoogle Scholar
  48. MacEwan, D. M. C. (1949) Some notes on the recording and interpretation of X-ray diagrams of soil clays: J. Soil Sci., v.1, pp.90–103.CrossRefGoogle Scholar
  49. Marel, H. W. van der (1954) Potassium fixation in Dutch soils: mineralogical analyses: Soil Sci., v.78, pp.163–179.CrossRefGoogle Scholar
  50. Marshall, C. E. (1935) Layer lattices and the base-exchange clays: Z. Krist., v.91, pp.433–449.Google Scholar
  51. Mehra, O. P. and Jackson, M. L. (1959) Constancy of the sum of mica unit cell potassium surface and interlayer sorption surface in vermieulite-illite clays: Soil Sci. Soc. Amer. Proc., v.23, pp.101–105.CrossRefGoogle Scholar
  52. Milford, M. H. and Jackson, M. L. (1962) Illite content and size distribution in relation to potassium availability in some soils of North Central United States: Agron. Abstracts, American Society of Agronomy, Madison, Wisconsin, pp.21.Google Scholar
  53. Mortland, M. M. and Gieseking, J. E. (1951) Influence of the silicate ion on potassium fixation: Soil Sci., v.71, pp.381–385.CrossRefGoogle Scholar
  54. Murray, H. H. and Leininger, R. K. (1956) Effect of weathering on clay minerals: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 456, pp.340–347.Google Scholar
  55. Norrish, K. (1954) The swelling of montmorillonite: Disc. Faraday Soc., v.18, pp.120–134.CrossRefGoogle Scholar
  56. Page, J. B. and Baver, L. D. (1940) Ionic size in relation to fixation of cations by colloidal clays: Soil Sci. Soc. Amer. Proc, v.4, pp.150–155.CrossRefGoogle Scholar
  57. Pennington, R. P. and Jackson, M. L. (1948) Segregation of the clay minerals of poly-component soil clays: Soil Sci. Soc. Amer. Proc, v.12, pp.452–457.CrossRefGoogle Scholar
  58. Polzer, W. L. (1961) A preliminary study of the solubility of kaolinite at low temperature and pressure: in Clays and Clay Minerals, 10th Conf., (in press).Google Scholar
  59. Radoslovich, E. W. (1960) The structure of museovite, KAl2(Si3Al)O10(OH)2: Acta Cryst., v.13, pp.919–932.CrossRefGoogle Scholar
  60. Ragland, J. L. and Coleman, N. T. (1960) The hydrolysis of aluminum salts in clay and soil systems: Soil Sci. Soc. Amer. Proc, v.24, pp.457–460.CrossRefGoogle Scholar
  61. Rich, C. I., Seatz, L. F., and Kunze, G. W. (Review editors) (1959) Certain properties of selected southeastern United States soils and mineralogical procedures for their study: Southern Regional Bulletin 61, Va. Agr. Exp. Sta., Blacksburg, Va.Google Scholar
  62. Rich, C. I. (1960) Aluminum in interlayers of vermiculite: Soil Sci. Soc. Amer. Proc., v.24, pp.26–32.CrossRefGoogle Scholar
  63. Rich, C. I. and Obenshain, S. S. (1955) Chemical and clay mineral properties of a Red-Yellow Podzolic soil derived from muscovite schist: Soil Sci. Soc. Amer. Proc, v.19, pp.334–339.CrossRefGoogle Scholar
  64. Sand, L. B. (1956) On the genesis of residual kaolins: Amer. Min., v.41, pp.28–40.Google Scholar
  65. Sawhney, B. L. (1960) Weathering and aluminum interlayers in a soil catena: Hollis-Charlton-Sutton-Leieester: Soil Sci. Soc. Amer. Proc., v.24, pp.221–226.CrossRefGoogle Scholar
  66. Sawhney, B. L. and Jackson, M. t,. (1958) Soil montmorillonite formulas: Soil Sci. Soc. Amer. Proc, v.22, pp.115–118.CrossRefGoogle Scholar
  67. Schmehl, W. R. and Jackson, M. L. (1956) Interstratification of layer silicates in two soils clays: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 456, pp.423–428.Google Scholar
  68. Schwertmann, U. (1962a) Eigenschaften und Bildung aufweitbarer (quellbarer) Dreischicht-Tonminerale in Böden aus Sedimenten: Beitrage zur Mineralogie und Petrographie, v.8, pp.199–209.Google Scholar
  69. Schwertmann, U. (1962b) Die selektive Kationensorption der Tonfraktion einiger Böden aus Sedimenten: Z. Pflanzenernähr. Düng., Bodenk., v.97, pp.9–25.CrossRefGoogle Scholar
  70. Shen, M. J. and Rich, C. I. (1962) Aluminum fixation in montmorillonite: Soil Sci. Soc. Amer. Proc, v.26, pp.33–36.CrossRefGoogle Scholar
  71. Slaughter, M. and Milne, I. H. (1960) The formation of chlorite-like structures from montmorillonite: in Clays and Clay Minerals, 7th Conf., Pergamon Press, pp.114–124.Google Scholar
  72. Stephen, I. and MacEwan, D. M. C. (1951) Some chloritic clay minerals of unusual type: Clay Min. Bull., v.1, pp.157–162.CrossRefGoogle Scholar
  73. Tamara, T. (1957) Identification of the 14 Å clay mineral component: Amer. Min., v.42, pp. 107–110.Google Scholar
  74. Theisen, A. A., Webster, G. R., and Harward, M. E. (1959) The occurrence of chlorite and vermiculite in the clay fraction of three British Columbia soils: Canadian J. Soil Sci., v.39, pp.244–251.CrossRefGoogle Scholar
  75. Truog, E. and Jones, R. J. (1938) Fate of soluble potash applied to soils: J. Ind. Eng. Chem., v.80, pp.882–885.CrossRefGoogle Scholar
  76. Walker, G. F. (1949) The decomposition of biotite in the soil: Min. Mag., v.28, pp.693–703.Google Scholar
  77. Wear, J. I. and White, J. L. (1951) Potassium fixation in clay minerals as related to crystal structure: Soil Sci., v.71, pp.1–14.CrossRefGoogle Scholar
  78. Weaver, C. E. (1956) The distribution and identification of mixed-layer clays in sedimentary rocks: Amer. Min., v.41, pp.202–221.Google Scholar
  79. Weaver, C. E. (1958) The effects and geologic significance of potassium “fixation” by expandable clay minerals derived from muscovite, biotite, chlorite, and volcanic material: Amer. Min., v.43, pp.839–861.Google Scholar
  80. Weiss, Armin (1958) Uber das Kationenaustauschvermögen der Tonminerale II: Der Kationenaustausch bei den Mineralen der Glimmer-, Vermikulit- und Montmorillonit-gruppe: Z. anorg. allg. Chemie, v.297, pp.258–286.Google Scholar
  81. Weiss, Armin, Mehler, A., and Hofmann, U. (1956) Cation exchange and innercrystalline swelling capacity of the minerals of the mica group: Z. Naturforschg., v.11b, pp.435–438.CrossRefGoogle Scholar
  82. White, J. L. (1951) Transformation of illite into montmorillonite: Soil Sci. Soc. Amer. Proc, v.15, pp.129–133.CrossRefGoogle Scholar
  83. Whittig, L. D. and Jackson, M. L. (1956) Mineral content and distribution as indexes of weathering in the Omega and Ahmeek soils of Northwestern Wisconsin: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 456, pp.362–371.Google Scholar

Copyright information

© The Clay Minerals Society 1962

Authors and Affiliations

  • M. L. Jackson
    • 1
  1. 1.Department of Soil ScienceUniversity of WisconsinMadisonUSA

Personalised recommendations