Advertisement

Clays and Clay Minerals

, Volume 8, Issue 1, pp 252–273 | Cite as

Solids Concentration Effects in Bentonite Drilling Fluids

  • D. T. Oakes
Article

Abstract

A series of studies of the apparent electrokinetic potential and other characteristics of aqueous bentonite systems as they are affected by bentonite concentration is presented. A new concentration parameter, which logically arises from a previously presented filtration theory (Oakes, 1958), is demonstrated to describe adequately the effects of solids concentration. The concentration parameter is analytically derived and is shown to make suitable allowance for the adsorbed phase on the bentonite patricles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, A. E. and Johnson, P. (1949) Colloid Science, v. 1 and 2: Oxford Univ. Press, London, 837 pp.Google Scholar
  2. Brunauer, S. (1943) The Adsorption of Gases and Vapors, v. 1: Princeton Univ. Press, 511 pp.Google Scholar
  3. Buzágh, A. von (1937) Colloid Systems: The Technical Press, London, 311 pp.Google Scholar
  4. Creighton, H. J. (1943) Principles of Electrochemistry, v. 1: John Wiley & Sons, Inc., New York, 477 pp.Google Scholar
  5. Deeg, E. and Huber, O. (1955) Dielektrische Eigenschaften einiger Torimassen im Dezimeterwellengebiet in Abhängigkeit vom Wassergalt: Ber. dtsch. keram. Ges., Band 32, Heft 9, pp. 261–272.Google Scholar
  6. Forslind, E. (1953) Water association and hydrogels: Proc. Second International Congress on Rheology, London, pp. 50–61.Google Scholar
  7. Fricke, H. and Parker, E. (1940) The dielectric properties of the system gelatin-water, II: J. Phys. Chem., v. 44, pp. 716–726.CrossRefGoogle Scholar
  8. Hauser, E. (1939) Colloidal Phenomena: McGraw-Hill Book Co., New York, 294 pp.Google Scholar
  9. Hauser, E. and Le Beau, D. S. (1941) Studies in colloidal clays, II: J. Phys. Chem., v. 45, pp. 54–65.CrossRefGoogle Scholar
  10. Henry, D. C. (1931) The cataphoresis of suspended particles: Proc. Roy. Soc. A, (London), v. A 133, pp. 106–129.CrossRefGoogle Scholar
  11. Johnson, A. L. (1955) Particle size distribution in clays: in Clays and Clay Technology, California Division of Mines, Bull. 196, pp. 89–91.Google Scholar
  12. Kistler, S. S. (1931) Dielectric constant and structure of thixotropic sols: J. Phys. Chem., v. 35, pp. 815–829.CrossRefGoogle Scholar
  13. Marinesco, N. (1929) Dielectric polarization and the structure of hydrophile colloids: C.R. Acad. Sci., Paris, v. 189, pp. 1274–1276.Google Scholar
  14. MacEwan, D. M. C. (1955) Interlamellar sorption by clay minerals: in Clays and Clay Technology, California Division of Mines, Bull. 169, pp. 78–85.Google Scholar
  15. Oakes, D. T. (1958) Filtration theory for oil-well drilling fluids: in Clays and Clay Minerals, Natl. Acad. Sci.–Natl. Research Council pub. 566, pp. 46–60.Google Scholar
  16. Oakes, D. T. and Burcik, E. J. (1956) Electrokinetie phenomena in colloidal clays: in Clays and Clay Minerals, Natl. Acad. Sci.–Natl. Research Council pub. 456, pp. 225–239.Google Scholar
  17. Rogers, W. F. (1953) Composition and Properties of Oil Well Drilling Fluids: Gulf Publ. Co., Houston, 676 pp.Google Scholar

Copyright information

© The Clay Minerals Society 1959

Authors and Affiliations

  • D. T. Oakes
    • 1
  1. 1.Lion Oil Company DivisionMonsanto Chemical CompanyTexas CityUSA

Personalised recommendations