Advertisement

Clays and Clay Minerals

, Volume 43, Issue 2, pp 184–190 | Cite as

Alteration of Smectite in a System Including Alanine at High Pressure and Temperature

  • Hideo Hashizume
  • Hirohisa Yamada
  • Hiromoto Nakazawa
Article

Abstract

Transformation of montmorillonite was experimentally investigated using a model system of montmorillonite-alanine at 100 MPa and up to 500°C. Sodium-montmorillonite changed to a mixed layer mineral of sodium- and ammoniumn-montmorillonites (Na/NH4-Mnt) in the temperature range from 150 to 400°C. Ammonium ions were the decomposition product of alanine above 150°C. The Na/NH4-Mnt transformed to regularly and randomly interstratified minerals of NH4-montmorillonite and NH4-mica (o. NH4-Mnt/NH4-Mic and d. NH4-Mnt/NH4-Mic) at 400°C. These mixed layered minerals transformed to ammonium-mica at 500°C. Ammonium-analcime appeared and coexisted with the smectites at temperatures over 200°C, and with albite for those over 400°C.

In comparison with the results of previous experiments in which there was no organic component, the present results revealed that (1) some uncommon mineral phases appeared by replacement of sodium ions in montmorillonite with ammonium ions, i.e., NH4-Mic, o. and d. NH4-Mnts, o. and d. NH4-Mnt/NH4-Mics, and (2) ammonium-analcime appeared. The mineral assemblages and alteration sequences correspond better with those observed in the natural system than those known from experimental results in aluminosilicate-water system.

Key Words

Alanine Albite Ammonium-analcime Ammonium-mica Ammonium-montmorillonite Diagenesis High pressure X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoyagi, K., and S. Shimoda. 1991. Diagenesis in argillaceous sediments and rocks. Nendo Kagaku 31: 23–31 (in Japanese with English abstract).Google Scholar
  2. Barker, D. S. 1964. Ammonium in alkali feldspars. Amer. Miner. 49: 851–858.Google Scholar
  3. Barren, R. M., and P. J. Derny. 1961. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. J. Chem. Soc. 1961: 971–982.CrossRefGoogle Scholar
  4. Boles, J. R. 1971. Synthesis of analcime from natural heulandite and clinoptilolite. Amer. Miner. 56: 1724–1734.Google Scholar
  5. Brindley, G. W. 1981. Long-spacing organics for calibrating long spacings of interstratified clay mineral. Clays & Clay Miner. 29: 67–68.CrossRefGoogle Scholar
  6. Campbell, A. S., and W. S. Fyfe. 1965. Analcime-albite equilibria. Am. J. Sci. 263: 807–816.CrossRefGoogle Scholar
  7. Chermak, J. A. 1993. Low temperature experimental investigation of the effect of high pH KOH solution on the opalinus shale, Switzerland. Clays & Clay Miner. 41: 365–372.CrossRefGoogle Scholar
  8. Cohen, V. A. 1986. Hydration states of smectite in NaCl brines at elevated pressures and temperature. Clays & Clay Miner. 34: 385–389.CrossRefGoogle Scholar
  9. Eberl, D. 1976. The reaction of montmorillonite to mixed-layer clay: The effect of interlayer alkali and alkaline earth cations. Geochim. Cosmoshim. Acta 42: 1–7.CrossRefGoogle Scholar
  10. Eberl, D., G. Whitney, and H. Khoury. 1978. Hydrothermal reactivity of smectite. Amer. Miner. 63: 401–409.Google Scholar
  11. Erd, R. C., D. E. White, J. J. Fahey, and D. E. Lee. 1964. Buddingtonite, an ammonium feldspar with zeolitic water. Amer. Miner. 49: 831–850.Google Scholar
  12. Gotoh, Y., K. Okada, and N. Otsuka. 1988. Synthesis of ammonium montmorillonite. Clay Science 7: 115–127.Google Scholar
  13. Higashi, S. 1982. Tobelite, a new ammonium dioctahedral mica. Mineral. Jour. 11: 138–146.CrossRefGoogle Scholar
  14. Iijima, A. 1986. Occurrence of natural zeolite. Nendo Kagaku 26: 90–103.Google Scholar
  15. Inoue, A. 1991. Factors governing the smectite-to-illite conversion in diagenetic environments. Nendo Kagaku 31:14–22 (in Japanese with English abstract).Google Scholar
  16. Inoue, A., N. Kohyama, R. Kitagawa, and T. Watanabe. 1987. Chemical and morphological evidence for the conversion of smectite to illite. Clays & Clay Miner. 35: 111–120.CrossRefGoogle Scholar
  17. Juster, T. C., P. E. Brown, and S. W. Bailey. 1987. NH4-bearing illite in very low grade metamorphic rocks associated with coal, northeastern Pennsylvania. Amer. Miner. 72: 555–565.Google Scholar
  18. Sasaki, A. 1991. Time-dependence function on diagenetic change. In case of zeolitization in marine sediments. Nendo Kagaku 31: 7–13 (in Japanese with English abstract).Google Scholar
  19. Sheppard, R. A., and A. J. Gude III. 1973. Zeolite and associated authigenic minerals in tuffaceous rocks of the Big Study Formation, Mohave County, Arizona. U.S. Geol. Surv. Prof. Paper 830: 1–36.Google Scholar
  20. Smith, J. V. 1956. The powder patterns and lattice parameters of plagioclase feldspars. I. The soda-rich plagioclases. Mineral Mag. 31: 47–68.Google Scholar
  21. Stevenson, F. J., and A. P. S. Dhariwal. 1959. Distribution of fixed ammonium in soil. Soil Science Society of America Proceedings. 121–125.Google Scholar
  22. Sŭcha, V., and V. Širğńová. 1991. Ammonium and potassium fixation in smectite by wetting and drying. Clays & Clay Miner. 39: 556–559.CrossRefGoogle Scholar
  23. Thompsom, A. B. 1971. Analcite-albite equilibria at low temperature. Am. J. Sci. 271: 79–92.CrossRefGoogle Scholar
  24. Tsunashima, A., F. Kanamaru, S. Ueda, M. Koizumi, and T. Matsushita. 1975. Hydrothermal syntheses of amino acid-montmorillonites and ammonium-micas. Clays & Clay Miner. 23: 115–118.CrossRefGoogle Scholar
  25. Utada, M. 1985. Zoning of authigenic minerals and its genesis. Nendo Kagaku 25: 119–125.Google Scholar
  26. Velde, B., T. Suzuki, and E. Nicot. 1986. Pressure-temperature-composition of illite/smectite mixed-layer minerals: Niger delta mudstones and other examples. Clays & Clay Miner. 34: 435–441.CrossRefGoogle Scholar
  27. Whitney, G. 1990. Role of water in the smectite-to-illite reaction. Clays & Clay Miner. 38: 343–350.CrossRefGoogle Scholar
  28. Williams, L. B., and R. E. Ferrell Jr. 1991. Ammonium substitution in illite during maturation of organic matter. Clays & Clay Miner. 39: 400–408.CrossRefGoogle Scholar
  29. Yamada, H., T. Fujita, and H. Nakazawa. 1988. Design and calibration of a rapid quench hydrothermal apparatus. Jour. Ceramic Soc. Japan 96: 1041–1044.CrossRefGoogle Scholar
  30. Yamada, H., H. Nakazawa, K. Yoshioka, and T. Fujita. 1991. Smectites in the montmorillonite-beidellite series. Clay Miner. 26: 359–369.CrossRefGoogle Scholar
  31. Yau, Y.-C., D. R. Peacor, E. J. Essene, J. H. Lee, L.-C. Kuo, and M. A. Cosca. 1987. Hydrothermal treatment of smectite, illite, and basalt to 460°C: Comparison of natural with hydrothermally formed clay minerals. Clays & Clay Miner. 33: 241–250.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • Hideo Hashizume
    • 1
  • Hirohisa Yamada
    • 1
  • Hiromoto Nakazawa
    • 1
  1. 1.National Institute for Research in Inorganic MaterialsTsukubaJapan

Personalised recommendations