Clays and Clay Minerals

, Volume 50, Issue 2, pp 254–264 | Cite as

Local order of the transition metals for the substitution (Co1−yCuy)2Al(OH)6Cl·nH2O (0 ⩽ y ⩽ 1) in a copper-aluminum-layered double hydroxide-like phase

  • Fabrice LerouxEmail author
  • El Mostafa Moujahid
  • Hervé Roussel
  • Anne-Marie Flank
  • Valérie Briois
  • Jean-Pierre Besse


The substitution in layered double hydroxide-like phases (LDH) of composition (\(\matrix{ {{{\left( {{\rm{Co}}_{1 - y}^{2 + }{\rm{Cu}}_y^{2 + }} \right)}_2}{\rm{A}}{{\rm{l}}^{3 + }}{{\left( {{\rm{OH}}} \right)}_6}{\rm{C}}{{\rm{l}}^ - } \cdot n{{\rm{H}}_{\rm{2}}}{\rm{O}}} & {\left( {0 \leqslant y \leqslant 1} \right)} \cr } \))2Al3+(OH)6Cl·nH2O (0 ⩽ y ⩽ 1) was studied by X-ray diffraction and X-ray absorption spectroscopy. It was found that the lamellar character is maintained over the entire range of the substitution. The local order for the composition {Co2Al} is typical of brucite-like sheets, whereas segregation into small domains may explain the results obtained when the percentage of Cu atoms is increased. The {Cu2Al} end-member material presents alocal order around the Cu atoms closely related to the botallackite structure as present in basic layered Cu salts, with the presence of two distinct Cu-Cu distances.

Key Words

Botallackite Structure Layered Double Hydroxide X-ray Absorption Spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison, P., Ammundsen, B., Jones, D.J., Burns, G. and Rozière, J. (1999) Cobalt substitution in lithium manganate spinels: examination of local structure and lithium extration by XAFS. Journal of Material Chemistry, 9, 3125–3130.CrossRefGoogle Scholar
  2. Alberding, N. and Crozier, E.D. (1983) Multiple scattering and disorder in extended X-ray absorption fine structure analysis. Physical Reviews B, 27, 3374–3382.CrossRefGoogle Scholar
  3. Alejandre, A., Medina, H., Salagre, P., Correig, X. and Sueiras, J.E. (1999) Preparation and study of Cu-Al mixed oxides via hydrotalcite-like precursors. Chemistry of Materials, 11, 939–948.CrossRefGoogle Scholar
  4. Bellotto, M., Rebours, B., Clause, O., Lynch, J., Bazin, D. and Elkaïm, E. (1996) A reexamination of hydrotalcite crystal chemistry. Journal of Physical Chemistry, 100, 8527–8534.CrossRefGoogle Scholar
  5. Besserguenev, A.V., Fogg, A.M., Francis, R.J., Price, S.J. and O’Hare, D. (1997) Synthesis an structure of gibbsite intercalation compounds [LiAl2(OH)6]X X=Cl, Br, NO3 and [LiAl2(OH)6]Cl. H2O using synchrotron X-ray and neutron powder diffraction. Chemistry of Materials, 9, 241–247.CrossRefGoogle Scholar
  6. Bookin, A.S., Cherkashin, V.I. and Drits, V.A. (1993) Polytype diversity of the hydrotalcite-like minerals. II Determination of the polytypes of experimentally studied varieties. Clays and Clay Minerals, 41, 558–564.CrossRefGoogle Scholar
  7. Carrado, K.A. and Wasserman, S.R. (1996) Stability of Cu(II) and Fe(III) porphyrins on montmorillonite clay: an X-ray absorption study. Chemistry of Materials, 8, 219–225.CrossRefGoogle Scholar
  8. Fragnaud, P., Prouzet, E., Ouvrard, G., Mansot, J.-L., Payen, C., Brec, R. and Dexpert, H. (1993) Room temperature synthesis study of highly disordered a-Ni2P2S6. Journal of Non-crystalline Solids, 160, 1–17.CrossRefGoogle Scholar
  9. Fujita, W., Awaga, K. and Yokoyama, T. (1997) EXAFS study of two dimensional hybrid nanocomposites, Cu2(OH)3(n-CmH2m+1COO) (m=0,1,7,8,9): structural modification in the inorganic layer induced by the interlayer organic molecule. Inorganic Chemistry, 36, 196–199.CrossRefGoogle Scholar
  10. Hofmeister, W. and Von Platen, H. (1992) Crystal chemistry and atomic order in brucite-related double-layer structures. Crystal Review, 3, 3–29.CrossRefGoogle Scholar
  11. Jiménez-Lopez, A., Rodriguez-Castellon, R., Olivera-Pastor, P., Maireles-Torres, P., Tomlinson, A.A.G., Jones, D.J. and Rozière, J. (1993) Layered basic copper anion exchangers: chemical characterisation and X-ray absorption study. Journal of Materials Chemistry, 3, 303–307.CrossRefGoogle Scholar
  12. Kamath, P.V., Therese, G.H. and Gopalakrishnan, J. (1997) On the existence of hydrotalcite-like phases in the absence of trivalent cations. Journal of Solid State Chemistry, 128, 38–41.CrossRefGoogle Scholar
  13. Kloprogge, J.T. and Frost, R.L. (1999) Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. Journal of Solid State Chemistry, 146, 506–515.CrossRefGoogle Scholar
  14. Köckerling, M., Geismar, G., Henkel, G. and Nolting, H.-F. (1997) X-ray absorption spectroscopic studies on copper-containing hydrotalcite. Journal of the Chemical Society, Faraday Transactions, 93, 481–484.CrossRefGoogle Scholar
  15. Leroux, F., Piffard, Y., Ouvrard, G., Mansot, J.-L. and Guyomard D. (1999) New amorphous mixed transition metal oxides and their Li derivatives: synthesis, characterization, and electrochemical behavior. Chemistry of Materials, 11, 2948–2959.CrossRefGoogle Scholar
  16. Leroux, F., Adachi-Pagano, M., Intissar, M., Chauvière, S., Forano, C. and Besse, J.-P. (2001a) Delamination and restacking of layered double hydroxides. Journal of Materials Chemistry, 11, 105–112.CrossRefGoogle Scholar
  17. Leroux, F., Moujahid, El M., Taviot-Guého, C. and Besse, J.-P. (2001b) Effect of layer charge modification for Co-Al layered double hydroxides: study by X-ray absorption spectroscopy. Solid State Sciences, 3, 81–92.CrossRefGoogle Scholar
  18. Malherbe, F., Bigey, L., Forano, C., de Roy, A. and Besse, J.-P. (1999) Structural aspects and thermal properties of takovite-like layered double hydroxides pillared with chromium oxo-anions. Journal of the Chemical Society, Dalton Transactions, 3831–3839.Google Scholar
  19. Manceau, A. and Calas, G. (1986) Nickel-bearing clay minerals: II Intracrystalline distribution of nickel: an X-ray absorption study. Clay Minerals, 21, 341–360.CrossRefGoogle Scholar
  20. McKale, A.G., Veal, B.W., Paulikas, A.P., Chan, S.-K. and Knapp, G.S. (1988) Improved ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. Journal of the American Chemical Society, 110, 3763–3768.CrossRefGoogle Scholar
  21. Miyata, S. (1983) Anion-exchange properties of hydrotalcitelike compounds. Clays and Clay Minerals, 31, 305–311.CrossRefGoogle Scholar
  22. O’Neill, H.St.C. (1994) Temperature dependence of the cation distribution in CoAl2O4 spinel. European Journal of Mineralogy, 6, 603–609.CrossRefGoogle Scholar
  23. Prévot, V., Forano, C. and Besse, J.-P. (2001) Hybrid derivatives of layered double hydroxides. Applied Clay Science, 18, 3–15.CrossRefGoogle Scholar
  24. Rajamathi, M., Kamath, V. and Seshadri, R. (2000) Polymorphism in nickel hydroxide: role of interstratification. Journal of Material Chemistry, 10, 503–506.CrossRefGoogle Scholar
  25. Roussel, H., Briois, V., Elkaïm, E., de Roy, A. and Besse, J.-P. (2000) Cationic order and structure of [Zn-Cr-Cl] and [Cu-Cr-Cl] layered double hydroxides: an XRD and EXAFS study. Journal of Physical Chemistry B, 104, 5915–5923.CrossRefGoogle Scholar
  26. Sakharov, B.A., Lindgreen, H., Salyn, A.L. and Drits V.A. (1999) Mixed-layer kaolinite-illite-vermiculite in North Sea shales. Clay Minerals, 34, 333–344.CrossRefGoogle Scholar
  27. Shimizu, K., Maeshima, H., Yoshida, H., Satsuma, A. and Hattori, T (2000) Spectroscopic characterisation of Cu-Al2O3 catalysts for selective reduction of NO with propene. Physical Chemistry Chemical Physics, 2, 2435–2439.CrossRefGoogle Scholar
  28. Singh, B., Sherma, D.M., Gilkes, R.J., Wells, M. and Mosselmans, J.F.W. (2000) Structural chemistry of Fe, Mn and Ni in synthetic hematites as determined by extended X-ray absorption fine structure spectroscopy. Clays and Clay Minerals, 48, 521–528.CrossRefGoogle Scholar
  29. Thiel, J.-P., Chiang, C.K. and Poeppelmeier, K.R. (1993) Structure of LiAl2(OH)7. 2H2O. Chemistry of Materials, 5, 297–304.CrossRefGoogle Scholar
  30. Thompson, H.A., Parks, G.A. and Brown, G.E., Jr. (1999) Ambient-temperature synthesis, evolution, and characterization of cobalt-aluminum hydrotalcite-like solids. Clays and Clay Minerals, 47, 425–438.CrossRefGoogle Scholar
  31. Trombetta, M., Ramis, G., Busca, G., Montanari, B. and Vaccari, A. (1997) Ammonia adsorption and oxidation on Cu/Mg/Al mixed oxide catalysts prepared via hydrotalcitetype precursors. Langmuir, 13, 4628–4637.CrossRefGoogle Scholar
  32. Vucelic, M., Jones, W. and Moggridge, G.D. (1997) Cation ordering in synthetic layered double hydroxides. Clays and Clay Minerals, 45, 803–813.CrossRefGoogle Scholar
  33. Velu, S., Sabde, D.P., Shah, N. and Sivasanker, S. (1998) New hydrotalcite-like anionic clays containing Zr4+ in the layers: synthesis and physicochemical properties. Chemistry of Materials, 10, 3451–3458.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2002

Authors and Affiliations

  • Fabrice Leroux
    • 1
    Email author
  • El Mostafa Moujahid
    • 1
  • Hervé Roussel
    • 2
  • Anne-Marie Flank
    • 2
  • Valérie Briois
    • 2
  • Jean-Pierre Besse
    • 1
  1. 1.Laboratoire des Matériaux Inorganiques, CNRS-UPRES-A no 6002Université Blaise PascalAubière cédexFrance
  2. 2.LURECentre Universitaire Paris SudOrsay cédexFrance

Personalised recommendations