Clays and Clay Minerals

, Volume 50, Issue 2, pp 186–197 | Cite as

Lepidocrocite in hydrothermal sediments of the Atlantis II and Thetis Deeps, red sea

  • Nurit Taitel GoldmanEmail author
  • Christian Bender Koch
  • Arieh Singer


Lepidocrocite (γ-FeOOH) formation in the hydrothermal brines of the Thetis and Atlantis II Deeps in the Red Sea results in markedly different crystals (size and shape). The only foreign element associated with the crystals is Si and analyses of samples from the two deeps yielded average Si/Fe (molar) ratios of 0.03 and 0.11, respectively. The Si/Fe ratio does not affect formation of a perfect lattice along [010]. Direct observations of crystal morphology as well as X-ray diffraction patterns, Mössbauer and infrared spectra, all indicate that the Atlantis II Deep lepidocrocite is less crystalline than the Thetis Deep lepidocrocite. In one sample a poly-disperse size distribution was resolved indicating a fine-scale variation in precipitation conditions. Infrared spectroscopy suggests that the Si is adsorbed on the lepidocrocite surfaces, probably also forming polymers, as both Fe-O-Si and Si-O-Si bonds can be detected. The formation of the Atlantis II Deep lepidocrocite is due to fast oxidation of Fe2+. The blanket-like layer of lepidocrocite in Atlantis II and Thetis Deeps lepidocrocite was probably formed as a result of precipitation during an abrupt oxidation event of the brine, triggered by down-welling of a condensed oxidized brine, which originated in the northern part of the Red Sea. A difference in Si concentrations determined the different crystal properties of the lepidocrocite formed in the two deeps.

Key Words

Analytical High-resolution Transmission Electron Microscopy Atlantis II Deep Electron Diffraction Hydrothermal Sediments Infrared Spectroscopy Mössbauer Spectroscopy Si associated with Lepidocrocite Thetis Deep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anschutz, P., Blanc, G. and Stille, P. (1995) Origin of fluids and the evolution of the Atlantis II deep hydrothermal system, Red Sea: strontium isotope study. Geochimica et Cosmochimica Acta, 59, 4799–4808.CrossRefGoogle Scholar
  2. Backer, V.H. and Richter, H. (1973) Die rezente hydrothermal-sedimentäre Lagerstätte Atlantis. II. Tief im Roten Meer. Geologische Rundschau, 62, 697–737.CrossRefGoogle Scholar
  3. Bignell, R.D. (1975) The geochemistry of metalliferous brine precipitates and other sediments from the Red Sea. Unpublished Ph.D. thesis, University of London, London, 276 pp.Google Scholar
  4. Bischoff, J.L. (1969) Red Sea geothermal brine deposits: their mineralogy, chemistry and genesis. Pp. 368–401 in: Hot Brines and Recent Heavy Metal Deposits in the Red Sea (E.T. Degens and D.A. Ross, editors). Springer-Verlag Berlin/ Heidelberg/New York.CrossRefGoogle Scholar
  5. Butuzova, G.Yu. and Lisitsyna, N.A. (1984) Metal deposits in deep subbasins of the Red Sea; ore geochemistry and distribution pattern. Lithology and Mineral Resources USSR, 18, 224–238.Google Scholar
  6. Butuzova, G.Yu., Dritz, V.A., Morozov, A.A. and Gorschkov, A.I. (1990) Processes of formation of iron-manganese oxyhydroxides in Atlantis II and Thetis Deeps in the Red Sea. Special Publications of the International Association of Sedimentology, 11, 57–72.Google Scholar
  7. Cambier, P. (1986) Infrared study of goethite of varying crystallinity and particle size. I. Interpretation of OH and lattice vibration frequencies. Clay Minerals, 21, 191–200.CrossRefGoogle Scholar
  8. Cornell, R.M. and Schwertmann, U. (1996) The Iron Oxides, Structure, Properties, Reactions, Occurrence and Uses. VCH Verlagsgesellschaft GmbH Weinheim, New York 573 pp.Google Scholar
  9. Craig, H. (1969) Geochemistry and origin of the Red Sea brines. Pp. 208–242 in: Hot Brines and Recent Heavy Metal Deposits in the Red Sea (E.T. Degens and D.A. Ross, editors). Springer-Verlag Berlin/Heidelberg/New York,.CrossRefGoogle Scholar
  10. Danielsson, L.G., Dyrssen, D. and Graneli, A. (1980) Chemical investigation of Atlantis II and discovery brines in the Red Sea. Geochimica et Cosmochimica Acta, 44, 2051–2065.CrossRefGoogle Scholar
  11. Dupré, B., Blanc, G., Bolegue, J. and Allegre, C.J. (1988) Metal remobilization at a spreading centre studied using lead isotopes. Nature, 333, 165–167.CrossRefGoogle Scholar
  12. Hartmann, M., Scholten, J.C., Stoffers, P. and Wehner, F. (1998a) Hydrographic structure of brine filled deeps in the Red Sea — new results from Shaban, Kerbit, Atlantis II and Discovery Deep. Marine Geology, 144, 311–330.CrossRefGoogle Scholar
  13. Hartmann, M., Scholten, J.C. and Stoffers, P. (1998b) Hydrographic structure of brine filled deeps in the Red Sea: Correction of Atlantis II Deep temperatures. Marine Geology, 144, 331–332.CrossRefGoogle Scholar
  14. Karim, Z. and Newman, A.C.D. (1986) The possible effect of soluble silicon on the lepidocrocite content of gley soils from England and Bangladesh. Journal of Soil Science, 37, 259–266.CrossRefGoogle Scholar
  15. Lewis, D.G. and Farmer, V.C. (1986) Infrared absorption of surface hydroxyl groups and lattice vibrations in lepidocrocite (γ-FeOOH) and boehmite (γ-AlOOH). Clay Minerals, 21, 93–100.CrossRefGoogle Scholar
  16. McKeague, J.A. and Day, J.H. (1966) Dithionite- and oxalateextractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46, 13–22.CrossRefGoogle Scholar
  17. Mehra, O.P. and Jackson, M.L. (1960) Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Pp. 317–327 in: Proceedings of the 7th National Conference of the Clay Minerals Society, Washington, D.C., 1958 (A. Swineford, editor). Pergamon Press, New York.Google Scholar
  18. Niemeyer, J., Chen, Y. and Bollag, J.M. (1992) Characterization of humic acids, composts and peat by diffuse reflectance Fourier Transform infrared spectroscopy. Soil Science Society of America Journal, 56, 135–140.CrossRefGoogle Scholar
  19. Schoel, M. and Faber, E. (1978) New isotopic evidence for the origin of Red Sea brines. Nature, 275, 436–438.CrossRefGoogle Scholar
  20. Scholten, J.C. (1984) Mineralogische Untersuchungen an Sedimentkernen aus dem Thetis-Tief, Rotes Meer. Thesis, Universität Heidelberg, Heidelberg, Germany, 53 pp.Google Scholar
  21. Scholten, J.C., Stoffers, P., Walter, P. and Plunger, W. (1991) Evidence for episodic hydrothermal activity in the Red Sea, from the composition and formation of hydrothermal sediments, Thetis Deep. Tectonophysics, 190, 109–117.CrossRefGoogle Scholar
  22. Schwertmann, U. (1959) Die fraktionierte Extraktion der freien Eiseoxyde in Boden, ihre mineralogischen Formen und ihre Entstehungsweisen. Zeitschrift für Pflanzenernahrung Düngung und Bodenkunde, 84, 194–204.CrossRefGoogle Scholar
  23. Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung Düngung und Bodenkunde, 105, 194–202.CrossRefGoogle Scholar
  24. Schwertmann, U. and Taylor, R. M. (1979) Natural and synthetic poorly crystallized lepidocrocite. Clay Minerals, 14, 285–293.CrossRefGoogle Scholar
  25. Schwertmann, U. and Thalmann, H. (1976) The influence of [Fe(II)], [Si] and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Minerals, 11, 189–200.CrossRefGoogle Scholar
  26. Schwertmann, U. and Wolska, E. (1990) The influence of aluminum on iron oxides, XV. Al-for-Fe substitution in synthetic lepidocrocite. Clays and Clay Minerals, 38, 209–212.CrossRefGoogle Scholar
  27. Schwertmann, U., Friedl, J., Stanjek, H., Murad, E. and Bender Koch, C. (1998) Iron oxides and smectites from the Atlantis II Deep, Red Sea. European Journal of Mineralogy, 10, 953–967.CrossRefGoogle Scholar
  28. Shanks III, W.C. and Bischoff, J.L. (1980) Geochemistry, sulfur isotope composition, and accumulation rates of Red Sea Geothermal deposits. Economic Geology and the Bulletin of the Society of Economic Geologists, 75, 445–459.CrossRefGoogle Scholar
  29. Stoffers, P. and Ross, D.A. (1972) Sedimentary history of the Red Sea. Pp. 849–865 in: Initial Report of the Deep Sea Drilling project XXIII (P.R Supko and O.E. Weser, editors).Google Scholar
  30. Taylor, R.M. (1984) Influence of chloride on the formation of iron oxides from Fe(II) chloride. II. Effect of [Cl] on the formation of lepidocrocite and its crystallinity. Clays and Clay Minerals, 32, 173–180.Google Scholar

Copyright information

© The Clay Minerals Society 2002

Authors and Affiliations

  • Nurit Taitel Goldman
    • 1
    • 2
    Email author
  • Christian Bender Koch
    • 3
  • Arieh Singer
    • 2
  1. 1.The Open University of IsraelTel AvivIsrael
  2. 2.The Seagram Center for Soil and Water Sciences, Faculty of Agricultural, Food and Environmental Quality SciencesThe Hebrew University of JerusalemRehovotIsrael
  3. 3.Chemistry DepartmentThe Royal Veterinary and Agricultural UniversityFrederiksbergDenmark

Personalised recommendations