Abramowicz, M.A., and Kluźniak, W., “A precise determination of black hole spin in GRO J1655-40”, Astron. Astrophys., 374, L19–L20, (2001). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0105077.
ADS
Article
Google Scholar
Abramowicz, M.A., Kluźniak, W., McClintock, J.E., and Remillard, R.A., “The Importance of Discovering a 3:2 Twin-Peak Quasi-periodic Oscillation in an Ultraluminous X-Ray Source, or How to Solve the Puzzle of Intermediate-Mass Black Holes”, Astrophys. J. Lett., 609, L63–L65, (2004). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0402012.
ADS
Article
Google Scholar
Agol, E., and Krolik, J.H., “Magnetic Stress at the Marginally Stable Orbit: Altered Disk Structure, Radiation, and Black Hole Spin Evolution”, Astrophys. J., 528, 161–170, (2000). ADS: http://adsabs.harvard.edu/abs/2000ApJ...528..161A.
ADS
Article
Google Scholar
Armitage, P.J., and Reynolds, C.S., “The variability of accretion on to Schwarzschild black holes from turbulent magnetized discs”, Mon. Not. R. Astron. Soc., 341, 1041–1050, (2003). ADS: http://adsabs.harvard.edu/abs/2003MNRAS.341.1041A.
ADS
Article
Google Scholar
Balbus, S.A., and Papaloizou, J.C.B., “On the Dynamical Foundations of alpha Disks”, Astrophys. J., 521, 650–658, (1999). ADS: http://adsabs.harvard.edu/abs/1999ApJ...521..650B.
ADS
Article
Google Scholar
Barausse, E., Sotiriou, T.P., and Miller, J.C., “Curvature singularities, tidal forces and the viability of Palatini f (R) gravity”, Class. Quantum Grav., 25, 105008, (2008). Related online version (cited on 29 May 2008): http://arXiv.org/abs/0712.1141.
ADS
MathSciNet
MATH
Article
Google Scholar
Bardeen, J.M., “Timelike and null geodesics in the Kerr metric”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 215–239, (Gordon and Breach, New York, U.S.A., 1973).
Google Scholar
Bardeen, J.M., Press, W.H., and Teukolsky, S.A., “Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation”, Astrophys. J., 178, 347–369, (1972). ADS: http://adsabs.harvard.edu/abs/1972ApJ...178..347B.
ADS
Article
Google Scholar
Barraco, D.E., and Hamity, V.H., “Stellar model in a fourth order theory of gravity”, Phys. Rev. D, 57, 954–960, (1998).
ADS
Article
Google Scholar
Barret, D., Olive, J.-F., and Miller, M.C., “The coherence of kilohertz quasi-periodic oscillations in the X-rays from accreting neutron stars”, Mon. Not. R. Astron. Soc., 370, 1140–1146, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0605486.
ADS
Article
Google Scholar
Barret, D., Olive, J.-F., and Miller, M.C., “Supporting evidence for the signature of the innermost stable circular orbit in Rossi X-ray data from 4U 1636-536”, Mon. Not. R. Astron. Soc., 376, 1139–1144, (2007).
ADS
Article
Google Scholar
Beckwith, K., and Done, C., “Iron line profiles in strong gravity”, Mon. Not. R. Astron. Soc., 352, 353–362, (2004). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0402199.
ADS
Article
Google Scholar
Bekenstein, J.D., “Nonexistence of Baryon Number for Black Holes. II”, Phys. Rev. D, 5, 2403–2412, (1972).
ADS
MathSciNet
Article
Google Scholar
Bekenstein, J.D., “The modified Newtonian dynamics-MOND and its implications for new physics”, Contemp. Phys., 47, 387–403, (2007). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0701848.
ADS
Article
Google Scholar
Bertotti, B., Iess, L., and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376, (2003).
ADS
Article
Google Scholar
NASA, “Beyond Einstein”, project homepage. URL (cited on 05 July 2007): http://universe.nasa.gov/.
Bhattacharyya, S., Miller, M.C., and Lamb, F.K., “The Shapes of Atomic Lines from the Surfaces of Weakly Magnetic Rotating Neutron Stars and Their Implications”, Astrophys. J., 644, 1085–1089, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0412107.
ADS
Article
Google Scholar
Bildsten, L., and Rutledge, R.E., “Coronal X-Ray Emission from the Stellar Companions to Transiently Accreting Black Holes”, Astrophys. J., 541, 908–917, (2000). ADS: http://adsabs.harvard.edu/abs/2000ApJ...541..908B.
ADS
Article
Google Scholar
Bildsten, L., Salpeter, E.E., and Wasserman, I., “The fate of accreted CNO elements in neutron star atmospheres: X-ray bursts and gamma-ray lines”, Astrophys. J., 384, 143–176, (1992). ADS: http://adsabs.harvard.edu/abs/1992ApJ...384..143B.
ADS
Article
Google Scholar
Blaes, O.M., Davis, S.W., Hirose, S., Krolik, J.H., and Stone, J.M., “Magnetic Pressure Support and Accretion Disk Spectra”, Astrophys. J., 645, 1402–1407, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0601380.
ADS
Article
Google Scholar
Braje, T.M., and Romani, R.W., “RX J1856-3754: Evidence for a Stiff Equation of State”, Astrophys. J., 580, 1043–1047, (2002). ADS: http://adsabs.harvard.edu/abs/2002ApJ...580.1043B.
ADS
Article
Google Scholar
Brans, C., and Dicke, R.H., “Mach’s Principle and a Relativistic Theory of Gravitation”, Phys. Rev., 124, 925–935, (1961).
ADS
MathSciNet
MATH
Article
Google Scholar
Brenneman, L.W., and Reynolds, C.S., “Constraining Black Hole Spin via X-Ray Spectroscopy”, Astrophys. J., 652, 1028–1043, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0608502.
ADS
Article
Google Scholar
Broderick, A.E., and Loeb, A., “Frequency-dependent Shift in the Image Centroid of the Black Hole at the Galactic Center as a Test of General Relativity”, Astrophys. J., 636, L109–L112, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0508386.
ADS
Article
Google Scholar
Broderick, A.E., and Loeb, A., “Testing General Relativity with High-Resolution Imaging of Sgr A*”, J. Phys.: Conf. Ser., 54, 448–455, (2006). URL (cited on 29 May 2008): http://stacks.iop.org/1742-6596/54/448.
ADS
Google Scholar
Brown, E.F., Bildsten, L., and Rutledge, R.E., “Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars”, Astrophys. J., 504, L95–L98, (1998). ADS: http://adsabs.harvard.edu/abs/1998ApJ...504L..95B.
ADS
Article
Google Scholar
Burgess, C.P., “Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory”, Living Rev. Relativity, 7, lrr-2004-5, (2004). URL (cited on 05 July 2007): http://www.livingreviews.org/lrr-2004-5.
Cadeau, C., Morsink, S.M., Leahy, D., and Campbell, S.S., “Light Curves for Rapidly Rotating Neutron Stars”, Astrophys. J., 654, 458–469, (2007). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0609325.
ADS
Article
Google Scholar
Carroll, S.M., “The Cosmological Constant”, Living Rev. Relativity, 4, lrr-2001-1, (2001). URL (cited on 05 July 2007): http://www.livingreviews.org/lrr-2001-1.
Carroll, S.M., Duvvuri, V., Trodden, M., and Turner, M.S., “Is cosmic speed-up due to new gravitational physics?”, Phys. Rev. D, 70, (2004). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0306438.
Carroll, S.M., and Kaplinghat, M., “Testing the Friedmann equation: The expansion of the universe during big-bang nucleosynthesis”, Phys. Rev. D, 65, 063507, (2002). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0108002.
ADS
Article
Google Scholar
Chang, P., Morsink, S.M., Bildsten, L., and Wasserman, I., “Rotational Broadening of Atomic Spectral Features from Neutron Stars”, Astrophys. J., 636, L117–L120, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0511246.
ADS
Article
Google Scholar
Chiba, T., “1/R gravity and scalar-tensor gravity”, Phys. Lett. B, 575, 1–3, (2003). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0307338.
ADS
MATH
Article
Google Scholar
Clayton, D.D., Principles of stellar evolution and nucleosynthesis, (University of Chicago Press, Chicago, U.S.A., 1983).
Google Scholar
Collins, N.A., and Hughes, S.A., “Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits”, Phys. Rev. D, 69, 124022, (2004). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/0402063.
ADS
MathSciNet
Article
Google Scholar
Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Rapidly rotating neutron stars in general relativity: Realistic equations of state”, Astrophys. J., 424, 823–845, (1994). ADS: http://adsabs.harvard.edu/abs/1994ApJ...424..823C.
ADS
Article
Google Scholar
Cottam, J., Paerels, F., and Mendez, M., “Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star”, Nature, 420, 51–54, (2002). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0211126.
ADS
Article
Google Scholar
Damour, T., “Binary Systems as Test-beds of Gravity Theories”, (2007). URL (cited on 24 July 2007): http://arxiv.org/abs/0704.0749.
Damour, T., and Esposito-Farese, G., “Nonperturbative strong-field effects in tensor-scalar theories of gravitation”, Phys. Rev. Lett., 70, 2220–2223, (1993).
ADS
Article
Google Scholar
Damour, T., and Esposito-Farese, G., “Tensor-scalar gravity and binary-pulsar experiments”, Phys. Rev. D, 54, 1474–1491, (1996). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/9602056.
ADS
Article
Google Scholar
Davis, S.W., Blaes, O.M., Hubeny, I., and Turner, N.J., “Relativistic Accretion Disk Models of High-State Black Hole X-Ray Binary Spectra”, Astrophys. J., 621, 372–387, (2005). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0408590.
ADS
Article
Google Scholar
De Villiers, J.-P., and Hawley, J.F., “A Numerical Method for General Relativistic Magnetohydrodynamics”, Astrophys. J., 589, 458–480, (2003). ADS: http://adsabs.harvard.edu/abs/2003ApJ...589..458D.
ADS
Article
Google Scholar
Dedeo, S., and Psaltis, D., “Towards New Tests of Strong-Field Gravity with Measurements of Surface Atomic Line Redshifts from Neutron Stars”, Phys. Rev. Lett., 90, 141101, (2003). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0302095.
ADS
Article
Google Scholar
DeDeo, S., and Psaltis, D, “Testing Strong-field Gravity with Quasi-Periodic Oscillations”, Phys. Rev. D, submitted, (2007). Related online version (cited on 05 July 2007): http://arXiv.org/abs/astro-ph/0405067.
DeDeo, S., and Psaltis, D., “Stable, accelerating universes in modified-gravity theories”, Phys. Rev. D, 78, 064013, (2008). ADS: http://adsabs.harvard.edu/abs/2008PhRvD..78f4013D.
ADS
Article
Google Scholar
Dehnen, W., and Binney, J., “Mass models of the Milky Way”, Mon. Not. R. Astron. Soc., 294, 429–438, (1998). ADS: http://adsabs.harvard.edu/abs/1998MNRAS.294..429D.
ADS
Article
Google Scholar
Di Salvo, T., Goldoni, P., Stella, L., van der Klis, M., Bazzano, A., Burderi, L., Farinelli, R., Frontera, F., Israel, G.L., Méndez, M., Mirabel, I.F., Robba, N.R., Sizun, P., Ubertini, P., and Lewin, W.H.G., “A Hard X-Ray View of Scorpius X-1 with INTEGRAL: Nonthermal Emission?”, Astrophys. J. Lett., 649, L91–L94, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0608335.
ADS
Article
Google Scholar
Di Salvo, T., Robba, N.R., Iaria, R., Stella, L., Burderi, L., and Israel, G.L., “Detection of a Hard Tail in the X-Ray Spectrum of the Z Source GX 349+2”, Astrophys. J., 554, 49–55, (2001). ADS: http://adsabs.harvard.edu/abs/2001ApJ...554...49D.
ADS
Article
Google Scholar
Dolgov, A.D., and Kawasaki, M., “Can modified gravity explain accelerated cosmic expansion?”, Phys. Lett. B, 573, 1–4, (2003).
ADS
MATH
Article
Google Scholar
Donoghue, J.F., “General relativity as an effective field theory: The leading quantum corrections”, Phys. Rev. D, 50, 3874–3888, (1994). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/9405057.
ADS
Article
Google Scholar
Dvali, G., Gabadadze, G., and Porrati, M., “4D gravity on a brane in 5D Minkowski space”, Phys. Lett. B, 485, 208–214, (2000). ADS: http://adsabs.harvard.edu/abs/2000PhLB..485..208D.
ADS
MathSciNet
MATH
Article
Google Scholar
Dvali, G., Gabadadze, G., and Porrati, M., “A comment on brane bending and ghosts in theories with infinite extra dimensions”, Phys. Lett. B, 484, 129–132, (2000). ADS: http://adsabs.harvard.edu/abs/2000PhLB..484..129D.
ADS
MathSciNet
MATH
Article
Google Scholar
Dvali, G., Gabadadze, G., and Porrati, M., “Metastable gravitons and infinite volume extra dimensions”, Phys. Lett. B, 484, 112–118, (2000). ADS: http://adsabs.harvard.edu/abs/2000PhLB..484..112D.
ADS
MATH
Article
Google Scholar
Eardley, D.M., “Observable effects of a scalar gravitational field in a binary pulsar”, Astrophys. J. Lett., 196, L59–L62, (1975). ADS: http://adsabs.harvard.edu/abs/1975ApJ...196L..59E.
ADS
Article
Google Scholar
Fabian, A.C., Rees, M.J., Stella, L., and White, N.E., “X-ray fluorescence from the inner disc in Cygnus X-1”, Mon. Not. R. Astron. Soc., 238, 729–736, (1989). ADS: http://adsabs.harvard.edu/abs/1989MNRAS.238..729F.
ADS
Article
Google Scholar
Fabian, A.C., and Vaughan, S., “The iron line in MCG-6-30-15 from XMM-Newton: evidence for gravitational light bending?”, Mon. Not. R. Astron. Soc., 340, L28–L32, (2003). ADS: http://adsabs.harvard.edu/abs/2003MNRAS.340L..28F.
ADS
Article
Google Scholar
Falcke, H., Melia, F., and Agol, E., “Viewing the Shadow of the Black Hole at the Galactic Center”, Astrophys. J. Lett., 528, L13–L16, (2000). ADS: http://adsabs.harvard.edu/abs/2000ApJ...528L..13F.
ADS
Article
Google Scholar
Flanagan, É.É., and Hughes, S.A., “The basics of gravitational wave theory”, New J. Phys., 7, 204, (2005). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/0501041.
ADS
MathSciNet
Article
Google Scholar
Gammie, C.F., “Efficiency of Magnetized Thin Accretion Disks in the Kerr Metric”, Astrophys. J. Lett., 522, L57–L60, (1999). ADS: http://adsabs.harvard.edu/abs/1999ApJ...522L..57G.
ADS
Article
Google Scholar
Gammie, C.F., McKinney, J.C., and Tóth, G., “HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics”, Astrophys. J., 589, 444–457, (2003). ADS: http://adsabs.harvard.edu/abs/2003ApJ...589..444G.
ADS
Article
Google Scholar
Garcia, M.R., McClintock, J.E., Narayan, R., Callanan, P., Barret, D., and Murray, S.S., “New Evidence for Black Hole Event Horizons from Chandra”, Astrophys. J. Lett., 553, L47–L50, (2001). ADS: http://adsabs.harvard.edu/abs/2001ApJ...553L..47G.
ADS
Article
Google Scholar
MPI for Gravitational Physics (Albert Einstein Institute), “GEO 600: The German-British Gravitational Wave Detector”, project homepage. URL (cited on 05 July 2007): http://geo600.aei.mpg.de.
George, I.M., and Fabian, A.C., “X-ray reflection from cold matter in active galactic nuclei and X-ray binaries”, Mon. Not. R. Astron. Soc., 249, 352–367, (1991). ADS: http://adsabs.harvard.edu/abs/1991MNRAS.249..352G.
ADS
Article
Google Scholar
Gierliński, M., Maciolek-Niedźwiecki, A., and Ebisawa, K., “Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40”, Mon. Not. R. Astron. Soc., 325, 1253–1265, (2001). ADS: http://adsabs.harvard.edu/abs/2001MNRAS.325.1253G.
ADS
Article
Google Scholar
Gierlińiski, M., Zdziarski, A.A., Poutanen, J., Coppi, P.S., Ebisawa, K., and Johnson, W.N., “Radiation mechanisms and geometry of Cygnus X-1 in the soft state”, Mon. Not. R. Astron. Soc., 309, 496–512, (1999). ADS: http://adsabs.harvard.edu/abs/1999MNRAS.309..496G.
ADS
Article
Google Scholar
Glampedakis, K., and Babak, S., “Mapping spacetimes with LISA: inspiral of a test body in a ‘quasi-Kerr’ field”, Class. Quantum Grav., 23, 4167–4188, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/0510057.
ADS
MathSciNet
MATH
Article
Google Scholar
Green, M.B., Schwarz, J.H., and Witten, E., Superstring Theory, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1988), corr. edition.
Google Scholar
Grove, J.E., Johnson, W.N., Kroeger, R.A., McNaron-Brown, K., Skibo, J.G., and Phlips, B.F., “Gamma-Ray Spectral States of Galactic Black Hole Candidates”, Astrophys. J., 500, 899–908, (1998). ADS: http://adsabs.harvard.edu/abs/1998ApJ...500..899G.
ADS
Article
Google Scholar
Guilbert, P.W., and Rees, M.J., “‘Cold’ material in non-thermal sources”, Mon. Not. R. Astron. Soc., 233, 475–484, (1988). ADS: http://adsabs.harvard.edu/abs/1988MNRAS.233..475G.
ADS
Article
Google Scholar
Harada, T., “Neutron stars in scalar-tensor theories of gravity and catastrophe theory”, Phys. Rev. D, 57, 4802–4811, (1998). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/9801049.
ADS
MathSciNet
Article
Google Scholar
Hawking, S.W., “Black Holes in the Brans-Dicke: Theory of Gravitation”, Commun. Math. Phys., 25, 167–171, (1972).
ADS
MathSciNet
Article
Google Scholar
Hubeny, I., and Hubeny, V., “Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei”, Astrophys. J. Lett., 484, L37–L40, (1997). ADS: http://adsabs.harvard.edu/abs/1997ApJ...484L..37H.
ADS
Article
Google Scholar
Iwasawa, K., Miniutti, G., and Fabian, A.C., “Flux and energy modulation of redshifted iron emission in NGC 3516: implications for the black hole mass”, Mon. Not. R. Astron. Soc., 355, 1073–1079, (2004). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0409293.
ADS
Article
Google Scholar
NASA GSFC / SAO, “IXO: International X-ray Observatory”, project homepage. URL (cited on 14 November 2008): http://ixo.gsfc.nasa.gov/.
Kaaret, P., Piraino, S., Bloser, P.F., Ford, E.C., Grindlay, J.E., Santangelo, A., Smale, A.P., and Zhang, W., “Strong-Field Gravity and X-Ray Observations of 4U 1820-30”, Astrophys. J. Lett., 520, L37–L40, (1999). ADS: http://adsabs.harvard.edu/abs/1999ApJ...520L..37K.
ADS
Article
Google Scholar
Kato, S., “Basic Properties of Thin-Disk Oscillations”, Publ. Astron. Soc. Japan, 53, 1–24, (2001).
ADS
Article
Google Scholar
Kluzniak, W., and Wagoner, R.V., “Evolution of the innermost stable orbits around accreting neutron stars”, Astrophys. J., 297, 548–554, (1985). ADS: http://adsabs.harvard.edu/abs/1985ApJ...297..548K.
ADS
Article
Google Scholar
Kramer, M., Backer, D.C., Cordes, J.M., Lazio, T.J.W., Stappers, B.W., and Johnston, S., “Strong-field tests of gravity using pulsars and black holes”, New Astron. Rev., 48, 993–1002, (2004).
ADS
Article
Google Scholar
Krichbaum, T.P., Graham, D.A., Witzel, A., Greve, A., Wink, J.E., Grewing, M., Colomer, F., de Vicente, P., Gomez-Gonzalez, J., Baudry, A., and Zensus, J.A., “VLBI observations of the galactic center source SGR A* at 86 GHz and 215 GHz”, Astron. Astrophys., 335, L106–L110, (1998). ADS: http://adsabs.harvard.edu/abs/1998A&A...335L.106K.
ADS
Google Scholar
Krolik, J.H., “Magnetized Accretion inside the Marginally Stable Orbit around a Black Hole”, Astrophys. J. Lett., 515, L73–L76, (1999). ADS: http://adsabs.harvard.edu/abs/1999ApJ...515L..73K.
ADS
Article
Google Scholar
Laor, A., “Line profiles from a disk around a rotating black hole”, Astrophys. J., 376, 90–94, (1991). ADS: http://adsabs.harvard.edu/abs/1991ApJ...376...90L.
ADS
Article
Google Scholar
Lasota, J.-P., “X-rays from quiescent low-mass X-ray binary transients”, Astron. Astrophys., 360, 575–582, (2000). ADS: http://adsabs.harvard.edu/abs/2000A&A...360..575L.
ADS
Google Scholar
Lattimer, J.M., and Prakash, M., “Neutron Star Structure and the Equation of State”, Astrophys. J., 550, 426–442, (2001). ADS: http://adsabs.harvard.edu/abs/2001ApJ...550..426L.
ADS
Article
Google Scholar
Laurent, P., and Titarchuk, L., “The Converging Inflow Spectrum Is an Intrinsic Signature for a Black Hole: Monte Carlo Simulations of Comptonization on Free-falling Electrons”, Astrophys. J., 511, 289–297, (1999). ADS: http://adsabs.harvard.edu/abs/1999ApJ...511..289L.
ADS
Article
Google Scholar
Lewin, W.H.G., van Paradijs, J., and Taam, R.E., “X-Ray Bursts”, Space Sci. Rev., 62, 223–389, (1993).
ADS
Article
Google Scholar
Lewin, W.H.G., van Paradijs, J., and Taam, R.E., “Black-Hole Candidates”, in Lewin, W.H.G., van Paradijs, J., and van den Heuvel, E.P.J., eds., X-ray Binaries, Cambridge Astrophysics Series, vol. 126, p. 126, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1995).
Google Scholar
Li, L.-X., Zimmerman, E.R., Narayan, R., and McClintock, J.E., “Multitemperature Black-body Spectrum of a Thin Accretion Disk around a Kerr Black Hole: Model Computations and Comparison with Observations”, Astrophys. J. Suppl. Ser., 157, 335–370, (2005). ADS: http://adsabs.harvard.edu/abs/2005ApJS..157..335L.
ADS
Article
Google Scholar
California Institute of Technology, “LIGO Scientific Collaboration”, project homepage. URL (cited on 05 July 2007): http://www.ligo.org.
Lo, K.Y., Shen, Z.-Q., Zhao, J.-H., and Ho, P.T.P., “Intrinsic Size of Sagittarius A*: 72 Schwarzschild Radii”, Astrophys. J. Lett., 508, L61–L64, (1998). ADS: http://adsabs.harvard.edu/abs/1998ApJ...508L..61L.
ADS
Article
Google Scholar
Maartens, R., “Brane-World Gravity”, Living Rev. Relativity, 7, lrr-2004-7, (2004). URL (cited on 05 July 2007): http://www.livingreviews.org/lrr-2004-7.
McClintock, J.E., Narayan, R., and Rybicki, G.B., “On the Lack of Thermal Emission from the Quiescent Black Hole XTE J1118+480: Evidence for the Event Horizon”, Astrophys. J., 615, 402–415, (2004). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0403251.
ADS
Article
Google Scholar
McClintock, J.E., and Remillard, R.A., “Black hole binaries”, in Lewin, W.H.G., and van der Klis, M., eds., Compact Stellar X-Ray Sources, Cambridge Astrophysics Series, vol. 39, pp. 157–213, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2006).
Chapter
Google Scholar
McClintock, J.E., Shafee, R., Narayan, R., Remillard, R.A., Davis, S.W., and Li, L.-X., “The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105”, Astrophys. J., 652, 518–539, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0606076.
ADS
Article
Google Scholar
Méndez, M., “The elusive Innermost Stable Circular Orbit: Now you see it, now you don’t”, in Antonelli, L.A., Israel, G.L., Piersanti, L., and Tornambè, A., eds., The Multicoloured Landscape of Compact Objects and their Explosive Origins, Proceedings of a conference held in Cefalù, Sicily, June 11–24, 2006, AIP Conference Proceedings, vol. 924, pp. 563–570, (American Institute of Physics, Melville, U.S.A., 2007). Related online version (cited on 05 July 2007): http://arXiv.org/abs/astro-ph/0611469.
Google Scholar
Méndez, M., van der Klis, M., Ford, E.C., Wijnands, R., and van Paradijs, J., “Dependence of the Frequency of the Kilohertz Quasi-periodic Oscillationson X-Ray Count Rate and Colors in 4U 1608-52”, Astrophys. J. Lett., 511, L49–L52, (1999). ADS: http://adsabs.harvard.edu/abs/1999ApJ...511L..49M.
ADS
Article
Google Scholar
Middleton, M., Done, C., Gierlińiski, M., and Davis, S.W., “Black hole spin in GRS 1915+105”, Mon. Not. R. Astron. Soc., 373, 1004–1012, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0601540.
ADS
Article
Google Scholar
Milgrom, M., “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis”, Astrophys. J., 270, 365–370, (1983). ADS: http://adsabs.harvard.edu/abs/1983ApJ...270..365M.
ADS
Article
Google Scholar
Miller, J.M., “A short review of relativistic iron lines from stellar-mass black holes”, Astron. Nachr., 327, 997–1003, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0609447.
ADS
MATH
Article
Google Scholar
Miller, J.M., “Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes”, Annu. Rev. Astron. Astrophys., 45, 441–479, (2007). Related online version (cited on 05 July 2007): http://arXiv.org/abs/0705.0540.
ADS
Article
Google Scholar
Miller, M.C., Lamb, F.K., and Psaltis, D., “Sonic-Point Model of Kilohertz Quasi-periodic Brightness Oscillations in Low-Mass X-Ray Binaries”, Astrophys. J., 508, 791–830, (1998). ADS: http://adsabs.harvard.edu/abs/1998ApJ...508..791M.
ADS
Article
Google Scholar
Miniutti, G., and Fabian, A.C., “A light bending model for the X-ray temporal and spectral properties of accreting black holes”, Mon. Not. R. Astron. Soc., 349, 1435–1448, (2004). ADS: http://adsabs.harvard.edu/abs/2004MNRAS.349.1435M.
ADS
Article
Google Scholar
Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
Google Scholar
Montero, P.J., Rezzolla, L., and Yoshida, S., “Oscillations of vertically integrated relativistic tori — II. Axisymmetric modes in a Kerr space-time”, Mon. Not. R. Astron. Soc., 354, 1040–1052, (2004). ADS: http://adsabs.harvard.edu/abs/2004astro.ph..7642M.
ADS
Article
Google Scholar
Nandra, K., George, I.M., Mushotzky, R.F., Turner, T.J., and Yaqoob, T., “ASCA Observations of Seyfert 1 Galaxies. II. Relativistic Iron K alpha Emission”, Astrophys. J., 477, 602–622, (1997). ADS: http://adsabs.harvard.edu/abs/1997ApJ...477..602N.
ADS
Article
Google Scholar
Nandra, K., O’Neill, P.M., George, I.M., Reeves, J.N., and Turner, T.J., “An XMM-Newton survey of broad iron lines in AGN”, Astron. Nachr., 327, 1039, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0610585.
ADS
Article
Google Scholar
Narayan, R., Garcia, M.R., and McClintock, J.E., “Advection-dominated Accretion and Black Hole Event Horizons”, Astrophys. J. Lett., 478, L79–L82, (1997). ADS: http://adsabs.harvard.edu/abs/1997ApJ...478L..79N.
ADS
Article
Google Scholar
Narayan, R., Yi, I., and Mahadevan, R., “Explaining the Spectrum of Sagittarius A* with a Model of an Accreting Black-Hole”, Nature, 374, 623–625, (1995).
ADS
Article
Google Scholar
NASA, “LISA: Laser Interferometer Space Antenna”, project homepage. URL (cited on 05 July 2007): http://lisa.nasa.gov.
Niedźwiecki, A., and Zdziarski, A.A., “Bulk motion Comptonization in black hole accretion flows”, Mon. Not. R. Astron. Soc., 365, 606–614, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0507579.
ADS
Article
Google Scholar
Noble, S.C., Leung, P.K., Gammie, C.F., and Book, L.G., “Simulating the emission and outflows of accretion disks”, Class. Quantum Grav., 24, 259–274, (2007). Related online version (cited on 18 May 2008): http://arXiv.org/abs/astro-ph/0507579.
ADS
MATH
Article
Google Scholar
Nowak, M., and Lehr, D., “Stable oscillations of black hole accretion discs”, in Abramowicz, M.A., Björnsson, G., and Pringle, J.E., eds., Theory of Black Hole Accretion Discs, Cambridge Contemporary Astrophysics, pp. 233–253, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1998). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/9812004.
Google Scholar
Oppenheimer, J.R., and Snyder, H., “On Continued Gravitational Contraction”, Phys. Rev., 56, 455–459, (1939).
ADS
MATH
Article
Google Scholar
Özel, F., “Soft equations of state for neutron-star matter ruled out by EXO 0748-676”, Nature, 441, 1115–1117, (2006).
ADS
Article
Google Scholar
Özel, F., and Di Matteo, T., “X-Ray Images of Hot Accretion Flows”, Astrophys. J., 548, 213–218, (2001). ADS: http://adsabs.harvard.edu/abs/2001ApJ...548..213O.
ADS
Article
Google Scholar
Özel, F., and Psaltis, D., “Spectral Lines from Rotating Neutron Stars”, Astrophys. J. Lett., 582, L31–L34, (2003). ADS: http://adsabs.harvard.edu/abs/2003ApJ...582L..310.
ADS
Article
Google Scholar
Özel, F., Psaltis, D., and Narayan, R., “Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows”, Astrophys. J., 541, 234–249, (2000). ADS: http://adsabs.harvard.edu/abs/2000ApJ...541..2340.
ADS
Article
Google Scholar
Pais, A., ‘Subtle is the Lord’: The Science and Life of Albert Einstein, (Oxford University Press, Oxford, U.K., 1982).
Google Scholar
Papathanassiou, H., and Psaltis, D., “Photon Scattering by Relativistic Flows in Schwarzschild Spacetimes. I. The Generation of Power-Law Spectra”, (2000). URL (cited on 05 July 2007): http://arXiv.org/abs/astro-ph/0011447.
Parker, L., and Simon, J.Z., “Einstein equation with quantum corrections reduced to second order”, Phys. Rev. D, 47, 1339–1355, (1993). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/9211002.
ADS
MathSciNet
Article
Google Scholar
Payne, D.G., and Blandford, R.D., “Compton scattering in a converging fluid flow. III — Spherical supercritical accretion”, Mon. Not. R. Astron. Soc., 196, 781–795, (1981). ADS: http://adsabs.harvard.edu/abs/1981MNRAS.196..781P.
ADS
MATH
Article
Google Scholar
Peebles, P.J., and Ratra, B., “The cosmological constant and dark energy”, Rev. Mod. Phys., 75, 559–606, (2003).
ADS
MathSciNet
MATH
Article
Google Scholar
Perlmutter, S., Gabi, S., Goldhaber, G., Goobar, A., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y., Lee, J.C., Pain, R., Pennypacker, C.R., Small, I.A., Ellis, R.S., McMahon, R.G., Boyle, B.J., Bunclark, P.S., Carter, D., Irwin, M.J., Glazebrook, K., Newberg, H.J.M., Filippenko, A.V., Matheson, T., Dopita, M., and Couch, W.J. (The Supernova Cosmology Project), “Measurements of the Cosmological Parameters Omega and Lambda from the First Seven Supernovae at z ≥ 0.35”, Astrophys. J., 483, 565–581, (1997). ADS: http://adsabs.harvard.edu/abs/1997ApJ...483..565P.
ADS
Article
Google Scholar
Psaltis, D., “Compton Scattering in Static and Moving Media. II. System-Frame Solutions for Spherically Symmetric Flows”, Astrophys. J., 555, 786–800, (2001). ADS: http://adsabs.harvard.edu/abs/2001ApJ...555..786P.
ADS
Article
Google Scholar
Psaltis, D., “Models of quasi-periodic variability in neutron stars and black holes”, Adv. Space Res., 28, 481–491, (2001).
ADS
Article
Google Scholar
Psaltis, D., “Constraining Brans-Dicke Gravity with Millisecond Pulsars in Ultracompact Binaries”, (2005). URL (cited on 05 July 2007): http://arXiv.org/abs/astro-ph/0501234.
Psaltis, D., “Accreting neutron stars and black holes: a decade of discoveries”, in Lewin, W.H.G., and van der Klis, M., eds., Compact Stellar X-Ray Sources, Cambridge Astrophysics Series, vol. 39, pp. 1–34, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2006).
Google Scholar
Psaltis, D., Belloni, T., and van der Klis, M., “Correlations in Quasi-periodic Oscillation and Noise Frequencies among Neutron Star and Black Hole X-Ray Binaries”, Astrophys. J., 520, 262–270, (1999). ADS: http://adsabs.harvard.edu/abs/1999ApJ...520..262P.
ADS
Article
Google Scholar
Psaltis, D., and Lamb, F.K., “Compton Scattering by Static and Moving Media. I. The Transfer Equation and Its Moments”, Astrophys. J., 488, 881–894, (1997). ADS: http://adsabs.harvard.edu/abs/1997ApJ...488..881P.
ADS
Article
Google Scholar
Psaltis, D., and Norman, C., “On the Origin of Quasi-Periodic Oscillations and Broad-band Noise in Accreting Neutron Stars and Black Holes”, (2000). URL (cited on 05 July 2007): http://arXiv.org/abs/astro-ph/0001391.
Psaltis, D., Perrodin, D., Dienes, K.R., and Mocioiu, I., “Kerr Black Holes are not Unique to General Relativity”, Phys. Rev. Lett., 100, 091101, 1101, (2008). ADS: http://adsabs.harvard.edu/abs/2008PhRvL.100i1101P.
MathSciNet
MATH
Google Scholar
Reeves, J.N., Fabian, A.C., Kataoka, J., Kunieda, H., Markowitz, A., Miniutti, G., Okajima, T., Serlemitsos, P., Takahashi, T., Terashima, Y., and Yaqoob, T., “Suzaku observations of iron lines and reflection in AGN”, Astron. Nachr., 327, 1079, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0610436.
ADS
Article
Google Scholar
Reynolds, C.S., and Begelman, M.C., “Iron Fluorescence from within the Innermost Stable Orbit of Black Hole Accretion Disks”, Astrophys. J., 488, 109–118, (1997). ADS: http://adsabs.harvard.edu/abs/1997ApJ...488..109R.
ADS
Article
Google Scholar
Reynolds, C.S., and Nowak, M.A., “Fluorescent iron lines as a probe of astrophysical black hole systems”, Phys. Rep., 377, 389–466, (2003).
ADS
Article
Google Scholar
Reynolds, C.S., Young, A.J., Begelman, M.C., and Fabian, A.C., “X-Ray Iron Line Reverberation from Black Hole Accretion Disks”, Astrophys. J., 514, 164–179, (1999). ADS: http://adsabs.harvard.edu/abs/1999ApJ...514..164R.
ADS
Article
Google Scholar
Rezzolla, L., Yoshida, S., and Zanotti, O., “Oscillations of vertically integrated relativistic tori — I. Axisymmetric modes in a Schwarzschild space-time”, Mon. Not. R. Astron. Soc., 344, 978–992, (2003). ADS: http://adsabs.harvard.edu/abs/2003MNRAS.344..978R.
ADS
Article
Google Scholar
Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P., Schommer, R.A., Smith, R.C., Spyromilio, J., Stubbs, C., Suntzeff, N.B., and Tonry, J., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astron. J., 116, 1009–1038, (1998). ADS: http://adsabs.harvard.edu/abs/1998AJ....116.1009R.
ADS
Article
Google Scholar
Rowan, S., and Hough, J., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 3, lrr-2000-3, (2000). URL (cited on 05 July 2007): http://www.livingreviews.org/lrr-2000-3.
Ryan, F.D., “Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments”, Phys. Rev. D, 52, 5707–5718, (1995).
ADS
Article
Google Scholar
Salgado, M., Sudarsky, D., and Nucamendi, U., “Spontaneous scalarization”, Phys. Rev. D, 58, 124003, (1998). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/9806070.
ADS
Article
Google Scholar
Sanders, R.H., and McGaugh, S.S., “Modified Newtonian Dynamics as an Alternative to Dark Matter”, Annu. Rev. Astron. Astrophys., 40, 263–317, (2002).
ADS
Article
Google Scholar
Santiago, D.I., Kalligas, D., and Wagoner, R.V., “Nucleosynthesis constraints on scalartensor theories of gravity”, Phys. Rev. D, 56, 7627–7637, (1997). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/9706017.
ADS
Article
Google Scholar
Scheel, M.A., Shapiro, S.L., and Teukolsky, S.A., “Collapse to black holes in Brans-Dicke theory. II. Comparison with general relativity”, Phys. Rev. D, 51, 4236–4249, (1995). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/9411026.
ADS
MathSciNet
Article
Google Scholar
Schödel, R., Ott, T., Genzel, R., Hofmann, R., Lehnert, M., Eckart, A., Mouawad, N., Alexander, T., Reid, M.J., Lenzen, R., Hartung, M., Lacombe, F., Rouan, D., Gendron, E., Rousset, G., Lagrange, A.-M., Brandner, W., Ageorges, N., Lidman, C., Moorwood, A.F.M., Spyromilio, J., Hubin, N., and Menten, K.M., “A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way”, Nature, 419, 694–696, (2002). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0210426.
ADS
Article
Google Scholar
Seifert, M.D., “Stability of spherically symmetric solutions in modified theories of gravity”, Phys. Rev. D, 76, 064002, (2007). Related online version (cited on 05 July 2007): http://arXiv.org/abs/gr-qc/0703060.
ADS
Article
Google Scholar
Shafee, R., McClintock, J.E., Narayan, R., Davis, S.W., Li, L.-X., and Remillard, R.A., “Estimating the Spin of Stellar-Mass Black Holes by Spectral Fitting of the X-Ray Continuum”, Astrophys. J. Lett., 636, L113–L116, (2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0508302.
ADS
Article
Google Scholar
Shakura, N.I., and Sunyaev, R.A., “Black Holes in Binary Systems. Observational Appearance”, Astron. Astrophys., 24, 337–355, (1973). ADS: http://adsabs.harvard.edu/abs/1973A&A....24..337S.
ADS
Google Scholar
Shapiro, S.L., and Teukolsky, S.A., Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, (John Wiley & Sons, Hoboken, U.S.A., 1983).
Book
Google Scholar
Shen, Z.-Q., Lo, K.Y., Liang, M.-C., Ho, P.T.P., and Zhao, J.-H., “A size of ∼1AU for the radio source Sgr A* at the centre of the Milky Way”, Nature, 438, 62–64, (2005). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0512515.
ADS
Article
Google Scholar
Simon, J.Z., “Higher-derivative Lagrangians, nonlocality, problems, and solutions”, Phys. Rev. D, 41, 3720–3733, (1990).
ADS
MathSciNet
Article
Google Scholar
Simon, J.Z., “Stability of flat space, semiclassical gravity, and higher derivatives”, Phys. Rev. D, 43, 3308–3316, (1991).
ADS
MathSciNet
Article
Google Scholar
International SKA Project Office (ISPO), “SKA: Square Kilometre Array, the international radiotelescope for the 21st century”, project homepage. URL (cited on 05 July 2007): http://www.skatelescope.org/.
Sotani, H., and Kokkotas, K.D., “Probing strong-field scalar-tensor gravity with gravitational wave asteroseismology”, Phys. Rev. D, 70, 084026, (2004). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/0409066.
ADS
Article
Google Scholar
Sotani, H., and Kokkotas, K.D., “Stellar oscillations in scalar-tensor theory of gravity”, Phys. Rev. D, 71, 124038, (2005). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/0506060.
ADS
Article
Google Scholar
Sotiriou, T.P., and Faraoni, V., “f (R) Theories of Gravity”, Rev. Mod. Phys., submitted, (2008). Related online version (cited on 18 May 2008): http://arXiv.org/abs/0805.1726.
Sotiriou, T.P., and Liberati, S., “Metric-affine f (R) theories of gravity”, Ann. Phys. (N.Y.), 322, 935–966, (2007). Related online version (cited on 24 July 2007): http://arXiv.org/abs/gr-qc/0604006.
ADS
MathSciNet
MATH
Article
Google Scholar
Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N.C., Kogut, A., Limon, M., Meyer, S.S., Page, L., Tucker, G.S., Weiland, J.L., Wollack, E., and Wright, E.L., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters”, Astrophys. J. Suppl. Ser., 148, 175–194, (2003). ADS: http://adsabs.harvard.edu/abs/2003ApJS..148..175S.
ADS
Article
Google Scholar
Stairs, I.H., “Testing General Relativity with Pulsar Timing”, Living Rev. Relativity, 6, lrr-2003-5, (2003). URL (cited on 05 July 2007): http://www.livingreviews.org/lrr-2003-5.
Starobinsky, A.A., “A new type of isotropic cosmological models without singularity”, Phys. Lett. B, 91, 99–102, (1980). ADS: http://adsabs.harvard.edu/abs/1980PhLB...91...99S.
ADS
MATH
Article
Google Scholar
Stella, L., Vietri, M., and Morsink, S.M., “Correlations in the Quasi-periodic Oscillation Frequencies of Low-Mass X-Ray Binaries and the Relativistic Precession Model”, Astrophys. J. Lett., 524, L63–L66, (1999). ADS: http://adsabs.harvard.edu/abs/1999ApJ...524L..63S.
ADS
Article
Google Scholar
Strohmayer, T.E., “Discovery of a 450 HZ Quasi-periodic Oscillation from the Microquasar GRO J1655-40 with the Rossi X-Ray Timing Explorer”, Astrophys. J. Lett., 552, L49–L53, (2001). ADS: http://adsabs.harvard.edu/abs/2001ApJ...552L..49S.
ADS
Article
Google Scholar
Strohmayer, T.E., and Bildsten, L., “New views of thermonuclear bursts”, in Lewin, W.H.G., and van der Klis, M., eds., Compact Stellar X-Ray Sources, Cambridge Astrophysics Series, vol. 39, pp. 113–156, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2006). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0301544.
Chapter
Google Scholar
Takahashi, R., “Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes”, Astrophys. J., 611, 996–1004, (2004). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0405099.
ADS
Article
Google Scholar
National Astronomical Observatory of Japan (NAO), “TAMA: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage. URL (cited on 05 July 2007): http://tamago.mtk.nao.ac.jp/.
Tanaka, Y., Nandra, K., Fabian, A.C., Inoue, H., Otani, C., Dotani, T., Hayashida, K., Iwasawa, K., Kii, T., Kunieda, H., Makino, F., and Matsuoka, M., “Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG-6-30-15”, Nature, 375, 659–661, (1995).
ADS
Article
Google Scholar
Thorne, K.S., and Dykla, J.J., “Black Holes in the Dicke-Brans Theory of Gravity”, Astrophys. J. Lett., 166, L35–L38, (1971). ADS: http://adsabs.harvard.edu/abs/1971ApJ...166L..35T.
ADS
MathSciNet
Article
Google Scholar
Thorsett, S.E., and Chakrabarty, D., “Neutron Star Mass Measurements. I. Radio Pulsars”, Astrophys. J., 512, 288–299, (1999). ADS: http://adsabs.harvard.edu/abs/1999ApJ...512..288T.
ADS
Article
Google Scholar
Titarchuk, L., Mastichiadis, A., and Kylafis, N.D., “X-Ray Spectral Formation in a Converging Fluid Flow: Spherical Accretion into Black Holes”, Astrophys. J., 487, 834–846, (1997). ADS: http://adsabs.harvard.edu/abs/1997ApJ...487..834T.
ADS
Article
Google Scholar
Titarchuk, L., and Zannias, T., “The Extended Power Law as an Intrinsic Signature for a Black Hole”, Astrophys. J., 493, 863–872, (1998). ADS: http://adsabs.harvard.edu/abs/1998ApJ...493..863T.
ADS
Article
Google Scholar
Tremaine, S., Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S.M., Filippenko, A.V., Green, R., Grillmair, C.J., Ho, L.C., Kormendy, J., Lauer, T.R., Magorrian, J., Pinkney, J., and Richstone, D.O., “The Slope of the Black Hole Mass versus Velocity Dispersion Correlation”, Astrophys. J., 574, 740–753, (2002). ADS: http://adsabs.harvard.edu/abs/2002ApJ...574..740T.
ADS
Article
Google Scholar
van der Klis, M., “A Possible Explanation for the “Parallel Tracks” Phenomenon in Low-Mass X-Ray Binaries”, Astrophys. J., 561, 943–949, (2001). ADS: http://adsabs.harvard.edu/abs/2001ApJ...561..943V.
ADS
Article
Google Scholar
van der Klis, M., “Rapid X-ray variability”, in Lewin, W.H.G., and van der Klis, M., eds., Compact Stellar X-Ray Sources, Cambridge Astrophysics Series, vol. 39, pp. 39–112, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2006).
Chapter
Google Scholar
van Straten, W., Bailes, M., Britton, M.C., Kulkarni, S.R., Anderson, S.B., Manchester, R.N., and Sarkissian, J.M., “A test of general relativity from the three-dimensional orbital geometry of a binary pulsar”, Nature, 412, 158–160, (2001). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0108254.
ADS
Article
Google Scholar
Verbunt, F., “Origin and evolution of X-ray binaries and binary radio pulsars”, Annu. Rev. Astron. Astrophys., 31, 93–127, (1993).
ADS
Article
Google Scholar
Villarreal, A.R., and Strohmayer, T.E., “Discovery of the Neutron Star Spin Frequency in EXO 0748-676”, Astrophys. J., 614, L121–L124, (2004). Related online version (cited on 24 July 2007): http://arXiv.org/abs/astro-ph/0409384.
ADS
Article
Google Scholar
Istituto Nazionale di Fisica Nucleare, “VIRGO Project Central Web Site”, project homepage. URL (cited on 05 July 2007): http://www.virgo.infn.it.
Wagoner, R.V., “Relativistic diskoseismology”, Phys. Rep., 311, 259–269, (1999). ADS: http://adsabs.harvard.edu/abs/1999PhR...311..259W.
ADS
Article
Google Scholar
Wagoner, R.V., Silbergleit, A.S., and Ortega-Rodríguez, M., “‘Stable’ Quasi-periodic Oscillations and Black Hole Properties from Diskoseismology”, Astrophys. J., 559, L25–L28, (2001). ADS: http://adsabs.harvard.edu/abs/2001ApJ...559L..25W.
ADS
Article
Google Scholar
Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).
MATH
Google Scholar
Weinberg, S., “The cosmological constant problem”, Rev. Mod. Phys., 61, 1–23, (1989). ADS: http://adsabs.harvard.edu/abs/1989RvMP...61....1W.
ADS
MathSciNet
MATH
Article
Google Scholar
Will, C.M., Theory and experiment in gravitational physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993), 2nd edition.
MATH
Book
Google Scholar
Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 9, lrr-2006-3, (2006). URL (cited on 05 July 2007): http://www.livingreviews.org/lrr-2006-3.
Will, C.M., and Zaglauer, H.W., “Gravitational radiation, close binary systems, and the Brans-Dicke theory of gravity”, Astrophys. J., 346, 366–377, (1989). ADS: http://adsabs.harvard.edu/abs/1989ApJ...346..366W.
ADS
Article
Google Scholar
Wilms, J., Reynolds, C.S., Begelman, M.C., Reeves, J.N., Molendi, S., Staubert, R., and Kendziorra, E., “XMM-EPIC observation of MCG-6-30-15: direct evidence for the extraction of energy from a spinning black hole?”, Mon. Not. R. Astron. Soc., 328, L27–L31, (2001). ADS: http://adsabs.harvard.edu/abs/2001MNRAS.328L..27W.
ADS
Article
Google Scholar
Woodard, R.P., “Avoiding Dark Energy with 1/R Modifications of Gravity”, (2006). URL (cited on 05 July 2007): http://arXiv.org/abs/astro-ph/0601672.
European Space Agency (ESA), “XEUS: The X-Ray Evolving Universe Spectrometer”, project homepage. URL (cited on 05 July 2007): http://www.rssd.esa.int/index.php?project=XEUS.
Yuan, F., Quataert, E., and Narayan, R., “Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A*”, Astrophys. J., 598, 301–312, (2003). ADS: http://adsabs.harvard.edu/abs/2003ApJ...598..301Y.
ADS
Article
Google Scholar
Zhang, S.N., Cui, W., and Chen, W., “Black Hole Spin in X-Ray Binaries: Observational Consequences”, Astrophys. J. Lett., 482, L155–L158, (1997). ADS: http://adsabs.harvard.edu/abs/1997ApJ...482L.155Z.
ADS
Article
Google Scholar
Zhang, W., Smale, A.P., Strohmayer, T.E., and Swank, J.H., “Correlation between Energy Spectral States and Fast Time Variability and Further Evidence for the Marginally Stable Orbit in 4U 1820-30”, Astrophys. J. Lett., 500, L171–L174, (1998). ADS: http://adsabs.harvard.edu/abs/1998ApJ...500L.171Z.
ADS
Article
Google Scholar