Multicolor karyotype analyses of mouse embryonic stem cells

  • Jianli Guo
  • Anna Jauch
  • Heidi Holtgreve-Grez
  • Brigitte Schoell
  • Dorothee Erz
  • Martina Schrank
  • Johannes W. G. Janssen
Articles Cell Growth/Differentiation/Apoptosis

Summary

The manipulation of embryonic stem (ES) cells to introduce directional genetic changes into the genome of mice has become an important tool in biomedical research. Monitoring of cell morphology before and after DNA manipulation and special culture conditions are a prerequisite to preserve the pluripotent properties of ES cells and thus their ability to generate chimera and effective germline transmission (GLT). It has been reported that prolonged cell culturing may affect the diploid chromosomal composition of cells and therefore the percentage of chimerism and GLT. Herein, we report multicolor-fluorescence in situ hybridization (M-FISH) analysis of four different ES cell lines/clones. Although the morphology of all four ES cell lines/clones appeared normal and all four expressed the early markers Oct-3/4 and Nanog, two cell lines presented consistent numerical and structural chromosome aberrations. We demonstrate that M-FISH is a sensitive and accurate method for a comprehensive karyotype analysis of ES cells and may minimize time, costs, and disappointment due to inadequate ES cell sources.

Key words

multicolor karyotype analyses M-FISH ES cells LIF feeder cells 

References

  1. Brown, D. G.; Willington, M. A.; Findlay, I.; Muggleton-Harris, A. L. Criteria that optimize the potential of murine embryonic stem cells for in vitro and in vivo developmental studies. In Vitro Cell Dev. Biol. 28A:773–778; 1992.PubMedGoogle Scholar
  2. Cho, C.; Willis, W. D.; Goulding, E. H.; Jung-Ha, H.; Choi, Y. C.; Hecht, N. B.; Eddy, E. M. Haploinsufficiency of protamine-1 or-2 causes infertility in mice. Nat. Genet. 28:82–86; 2001.PubMedCrossRefGoogle Scholar
  3. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem 162:156–159; 1987.PubMedCrossRefGoogle Scholar
  4. Dean, W.; Bowden, L.; Aitchison, A.; Klose, J.; Moore, T.; Meneses, J. J.; Reik, W.; Feil, R. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125:2273–2282; 1998.PubMedGoogle Scholar
  5. Draper, J. S.; Smith, K.; Gokhale, P.; Moore, H. D.; Maltby, E.; Johnson, J.; Meisner, L.; Zwaka, T. P.; Thomson, J. A.; Andrews, P. W. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22:53–54; 2004.PubMedCrossRefGoogle Scholar
  6. Evans, M. J.; Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156; 1981.PubMedCrossRefGoogle Scholar
  7. Jentsch, I.; Geigl, J.; Klein, C. A.; Speicher, M. R. Seven-fluorochrome mouse M-FISH for high-resolution analysis of interchromosomal rearrangements. Cytogenet. Genome Res. 103:84–88; 2003.PubMedCrossRefGoogle Scholar
  8. Liu, X.; Wu, H.; Loring, J.; Hormuzdi, S.; Disteche, C. M.; Bornstein, P.; Jaenisch, R. Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev. Dyn. 209:85–91; 1997.PubMedCrossRefGoogle Scholar
  9. Longo, L.; Bygrave, A.; Grosveld, F. G.; Pandolfi, P. P. The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res. 6:321–328; 1997.PubMedCrossRefGoogle Scholar
  10. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78:7634–7638; 1981.PubMedCrossRefGoogle Scholar
  11. Nagy, A.; Rossant, J.; Nagy, R.; Abramow-Newerly, W.; Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90:8424–8428; 1993.PubMedCrossRefGoogle Scholar
  12. Nichols, J.; Evans, E. P.; Smith, A. G. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110:1341–1348; 1990.PubMedGoogle Scholar
  13. Pease, S.; Braghetta, P.; Gearing, D.; Grail, D.; Williams, R. L. Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev. Biol. 141:344–352; 1990.PubMedCrossRefGoogle Scholar
  14. Rathjen, P. D.; Toth, S.; Willis, A.; Heath, J. K.; Smith A. G. Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62:1105–1114; 1990a.PubMedCrossRefGoogle Scholar
  15. Rathjen, P. D.; Nichols, J.; Toth, S.; Edwards, D. R.; Heath, J. K.; Smith, A. G. Developmentally programmed induction of differentiation inhibiting activity and the control of stem cell populations. Genes Dev. 4:2308–2318; 1990b.PubMedGoogle Scholar
  16. Robertson, E.; Bradley, A.; Kuehn, M.; Evans, M. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448; 1986.PubMedCrossRefGoogle Scholar
  17. Smith, A. G.; Heath, J. K.; Donaldson, D. D.; Wong, G. G.; Moreau, J.; Stahl, M.; Rogers, D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690; 1988.PubMedCrossRefGoogle Scholar
  18. Suzuki, H.; Kamada, N.; Ueda, O.; Jishage, K.; Kurihara, Y.; Kurihara, H.; Terauchi, Y.; Azuma, S.; Kadowaki, T.; Kodama, T.; Yazaki, Y.; Toyoda, Y. Germ-line contribution of embryonic stem cells in chimeric mice: influence of karyotype and in vitro differentiation ability. Exp. Anim. 46:17–23; 1997.PubMedCrossRefGoogle Scholar
  19. Szabo, P.; Mann, J. R. Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 120:1651–1660; 1994.PubMedGoogle Scholar
  20. Ward, C. M.; Stern, P.; Willington, M. A.; Flenniken, A. M. Efficient germline transmission of mouse embryonic stem cells grown in synthetic serum in the absence of a fibroblast feeder layer. Lab. Invest. 82:1765–1767; 2002.PubMedGoogle Scholar
  21. Williams, R. L.; Hilton, D. J.; Pease, S.; Willson, T. A.; Stewart, C. L.; Gearing, D. P.; Wagner, E. F.; Metcalf, D.; Nicola, N. A.; Gough, N. M. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687; 1988.PubMedCrossRefGoogle Scholar
  22. Ying, Q. L.; Nichols, J.; Chambers, I.; Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292; 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Jianli Guo
    • 1
  • Anna Jauch
    • 1
  • Heidi Holtgreve-Grez
    • 1
  • Brigitte Schoell
    • 1
  • Dorothee Erz
    • 1
  • Martina Schrank
    • 1
  • Johannes W. G. Janssen
    • 1
  1. 1.Institute of Human GeneticsUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of Biochemistry and Molecular Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations