Skip to main content
Log in

Cyclic strain stimulates proliferative capacity, α2 and α5 integrin, gene marker expression by human articular chondrocytes propagated on flexible silicone membranes

  • Reports
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Chondrocytes comprise less than 10% of cartilage tissue but are responsible for sensing and responding to mechanical stimuli imposed on the joint. However, the effect of mechanical signals at the cellular level is not yet fully defined. The purpose of this study was to test the hypothesis that mechanical stimulation in the form of cyclic strain modulates proliferative capacity and integrin expression of chondrocytes from osteoarthritic knee joints. Chondrocytes isolated from articular cartilage during total knee arthroplasty were propagated on flexible silicone membranes. The cells were subjected to cyclic strain for 24 h using a computer-controlled vacuum device, with replicate samples maintained under static conditions. Our results demonstrated increase in proliferative capacity of the cells subjected to cyclic strain compared with cells maintained under static conditions. The flexed cells also exhibited upregulation of the chondrocytic gene markers type II collagen and aggrecan. In addition, cyclic strain resulted in increased expression of the α2 and α5 integrin subunits, as well as an increased expression of vimentin. There was also intracellular reconfiguration of the enzyme protein kinase C. Our findings suggest that these molecules may play a role in the signal transduction pathway, eliciting cellular response to mechanical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouchet, B.; Colon, M.; Polotsky, A.; Shikani, A. H.; Hungerford, D. S. Beta-1 integrin expression by human nasal chondrocytes in microcarrier spinner culture. J. Biomed. Mater. Res. 52:716–724; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Buschmann, M. D.; Gluzband, Y. A.; Grodzinsky, A. J.; Hunziker, E. B. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108:1497–1508; 1995.

    PubMed  CAS  Google Scholar 

  • Camper, L.; Heinegard, D.; Lundgren-Akerlund, E. Integrin Alpha2-Betal is a receptor for the cartilage matrix protein chondroadherin. J. Cell. Biol. 138:1159–1167; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Damsky, C. H.; Werb, Z. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr. Opin. Cell Biol. 4:772–781; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Davisson, T. H.; Wu, F. J.; Jain, D.; Sah, R. L.; Ratcliffe, A. R. Effect of perfusion of the growth of tissue engineered cartilage. Trans. Orthop. Res. Soc. 45:811; 1999.

    Google Scholar 

  • Durrant, L. A.; Archer, C. W.; Benjamin, M.; Ralphs, J. R. Organization of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture. J. Anat. 194:343–353; 1999.

    Article  PubMed  Google Scholar 

  • Frondoza, C.; Sohrabi, A.; Hungerford, D. S. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 17:879–888; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Giannoni, P.; Siegrist, M.; Hunziker, E. B.; Wong, M. The mechanosensitivity of cartilage oligomeric matrix protein (COMP). Biorheology 40:101–109; 2003.

    PubMed  CAS  Google Scholar 

  • Gilbert, J. A.; Weinhold, P. S.; Banes, A. J.; Link, G. W.; Jones, G. L. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. J. Biomech. 27:1169–1177; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Karjalainen, H. M.; Sironen, R. K.; Elo, M. A.; Kaarniranta, K.; Takigawa, M.; Helminen, H. J.; Lammi, M. J. Gene expression profiles in chondrosarcoma cells subjected to cyclic stretching and hydrostatic pressure. A cDNA array study. Biorheology 40:93–100; 2003.

    PubMed  CAS  Google Scholar 

  • Korver, T. H. V.; van de Stadt, R. J.; Kiljan, E.; Jos van Kampen, G. P.; van der Korst, J. K. Effects of loading on the synthesis of proteoglycans in different layers of anatomically intact articular cartilage in vitro. J. Rheumatol. 19:905–912; 1992.

    PubMed  CAS  Google Scholar 

  • Langelier, E.; Suetterlin, R.; Hoemann, C. D.; Aebi, U.; Buschmann, M. D. The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments. J. Histochem. Cytochem. 48:1307–1320; 2000.

    PubMed  CAS  Google Scholar 

  • Lapadula, G.; Iannone, F.; Zuccaro, C.;Grattagliano, V.; Covelli, M.; Patella, V.; Lo Bianco, G.; Pipitone, V. Integrin expression on chondrocytes: correlations with the degree of cartilage damage in human osteoarthritis. Clin. Exp. Rheumatol. 15:247–254; 1997.

    PubMed  CAS  Google Scholar 

  • Larsson, T.; Aspden, R. M.; Heinegard, D. Effects of mechanical load on cartilage matrix biosynthesis in vitro. Matrix 11:388–394; 1991.

    PubMed  CAS  Google Scholar 

  • Lee, D. A.; Bader, D. L. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15:181–188; 1997.

    Article  PubMed  Google Scholar 

  • Lee, H. S.; Millward-Sadler, S. J.; Wright, M. O.; Nuki, G.; Al-Jamal, R.; Salter, D. M. Activation of integrin-RACK1/PKCalpha signalling in human articular chondrocyte mechanotransduction. Osteoarthr. Cartil. 10:890–897; 2002.

    Article  PubMed  Google Scholar 

  • Lee, H. S.; Millward-Sadler, S. J.; Wright, M. O.; Nuki, G.; Salter, D. M. Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and beta-catenin in human articular chondrocytes after mechanical stimulation. J. Bone Miner. Res. 15:1501–1509; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Loeser, R. F. Integrin-mediated attachment of articular chondrocytes to extracellular matrix proteins. Arthritis Rheum. 36:1103; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Loeser, R. F. Integrins and cell signaling in chondrocytes. Biorheology 39:119–124; 2002.

    PubMed  CAS  Google Scholar 

  • Loeser, R. F.; Carlson, C. S.; McGee, M. P. Expression of β-1 integrins by cultured articular chondrocytes and in osteoarthritic cartilage. Exp. Cell Res. 217:248–257; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Loeser, R. F.; Forsyth, C. B.; Samarel, A. M.; Im, H. J. Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J. Biol. Chem. 278:24577–24585; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Maniotis, A. J.; Chen, C. S.; Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. US 94:849–854; 1997.

    Article  CAS  Google Scholar 

  • Millward-Sadler, S. J.; Wright, M. O.; Lee, H.; Caldwell, H.; Nuki, G.; Salter, D. M.: Altered electrophysiological responses to mechanical stimulation and abnormal signaling through alpha 5 beta 1 integrin in chondrocytes from osteoarthritic cartilage. Osteoarthr. Cartil. 4:272–278; 2000.

    Article  Google Scholar 

  • Oh, C. D.; Chun, J. S. Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1. J. Biol. Chem. 19:36563–36571; 2003.

    Article  CAS  Google Scholar 

  • Ostergaard, K.; Salter, D. M.; Petersen, J.; Bendtzen, K.; Hvolris, J.; Andersen, C. B. Expression of alpha and beta subunits of the integrin superfamily in articular cartilage from macroscopically normal and osteoarthritic human femoral heads. Ann. Rheum. Dis. 57:303–308; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Parkkinen, J. J.; Lammi, M. J.; Helminen, H. J.; Tammi, M. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J. Orthop. Res. 10:610–620; 1992

    Article  PubMed  CAS  Google Scholar 

  • Piperno, M.; Reboul, P.; Hellio Le Graverand, M. P.; Peschard, M. J.; Annefeld, M.; Richard, M.; Vignon, E. Glucosamine sulfate modulates dysregulated activities of human osteoarthritic chondrocytes in vitro. Osteoarthr. Cartil. 8:207–212; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Salter, D. M.; Hughes, D. E.; Simpson, R.; Gardner, D. L. Integrin expression by human articular chondrocytes. Br. J. Rheumatol. 31:231–234; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Salter, D. M.; Millward-Sadler, S. J.; Nuki, G.; Wright, M. O. Integrin-inter-leukin-4 mechanotransduction pathways in human chondrocytes. Clin. Orthop. 391:S49-S60; 2001.

    Article  PubMed  Google Scholar 

  • Salter, D. M.; Millward-Sadler, S. J.; Nuki, G.; Wright, M. O. Differential responses of chondrocytes from normal and osteoarthritic human articular cartilage to mechanical stimulation. Biorheology 39:97–108; 2002.

    PubMed  CAS  Google Scholar 

  • Schmitt, D. A.; Hatton, J. P.; Emond, C., et al. The distribution of protein kinase c in human leukocytes is altered in microgravty. FASEB J. 10:1627–1633; 1996.

    PubMed  CAS  Google Scholar 

  • Shikhman, A. R.; Brinson, D. C.; Lotz, M. K. Distinct pathways regulate facilitated glucose transport in human articular chondrocytes during anabolic and catabolic responses. Am. J. Physiol. Endocrinol. Metab.; 2004, electronic publication ahead of print.

  • Shyy, J. Y.; Chien, S. Role of integrins in cellular responses to mechanical stress and adhesion. Curr. Opin. Cell Biol. 9:707–713; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Steinmeyer, J.; Ackermann, B.; Raiss, R. X. Intermittent cyclic loading of cartilage explants modulates fibronectin metabolism. Osteoarthr. Cartil. 5:331–341; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wang, N.; Butler, J. P.; Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Wong, M.; Siegrist, M.; Cao, X. Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix. Biol. 18:391–399; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Woods, V. L.; Schreck, P. J.; Gesink, D. S.; Pacheco, H. O.; Amiel, D.; Akeson, W. H.; Lotz, M. Integrin expression by human articular chondrocytes. Arthritis Rheum. 37:537–544; 1993.

    Article  Google Scholar 

  • Wright, M. O.; Nishida, K.; Bavington, C., et al. Hyperpolarisation of cultured human chondrocytes following cyclic pressure-induced strain: evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor. J Orthop Res. 15:742–747; 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelita G. Frondoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahiji, K., Polotsky, A., Hungerford, D.S. et al. Cyclic strain stimulates proliferative capacity, α2 and α5 integrin, gene marker expression by human articular chondrocytes propagated on flexible silicone membranes. In Vitro Cell.Dev.Biol.-Animal 40, 138–142 (2004). https://doi.org/10.1290/1543-706X(2004)40<138:CSSPCA>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2004)40<138:CSSPCA>2.0.CO;2

Key words

Navigation