Skip to main content
Log in

Estrogen mitogenic action. II. Negative regulation of the steroid hormone-responsive growth of cell lines derived from human and rodent target tissue tumors and conceptual implications

  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In an accompanying report (Moreno-Cuevas, J. E.; Sirbasku, D. A., In Vitro Cell. Dev. Biol.; 2000), we demonstrated 80-fold estrogen mitogenic effects with MTW9/PL2 rat mammary tumor cells in cultures supplemented with charcoaldextran-treated serum. All sera tested contained an estrogen reversible inhibitor(s). The purpose of this report is to extend those observations to additional sex steroid-responsive human and rodent cell lines. Every line tested showed a biphasic response to hormone-depleted serum. Concentrations of ≤10% (v/v) promoted substantive growth. At higher concentrations, serum was progressively inhibitory. With estrogen receptor-positive (ER+) human breast cancer cells, rat pituitary tumor cells, and Syrian hamster kidney tumor cells, 50% (v/v) serum caused significant inhibition, which was reversed by very low physiologic concentrations of estrogens. This same pattern was observed with the steroid hormone-responsive LNCaP human prostatic carcinoma cells. Because steroid hormone mitogenic effects are now easily demonstrable using our new methods, the identification of positive results has nullified our original endocrine estromedin hypothesis. We also evaluated autocrine/paracrine growth factor models of estrogen-responsive growth. We asked if insulin-like growth factors I and II, insulin, transforming growth factor alpha, or epidermal growth factor substituted for the positive effects of estrogens. Growth factors did not reverse the serum-caused inhibition. We asked also if transforming growth factor beta (TGFβ) substituted for the serum-borne inhibitor. TGFβ did not substitute. Altogether, our results are most consistent with the concept of a unique serum-borne inhibitor as has been proposed in the estrocolyone model. However, the aspect of the estrocolyone model related to steroid hormone mechanism of action requires more evaluation. The effects of sex steroids at picomolar concentrations may reflect mediation via inhibitor “activated” intracellular signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegra, J. C.; Lippman, M. E. Growth of a human breast cancer cell line in serum-free hormone supplemented medium. Cancer Res. 38:3823–3829; 1978.

    PubMed  CAS  Google Scholar 

  • Amara, J. F.; Dannies, P. S. 17β-Estradiol has a biphasic effect on GH cell growth. Endocrinology 112:1141–1143; 1983.

    PubMed  CAS  Google Scholar 

  • Anderson, J. N.; Clark, J. H.; Peck, E. J., Jr. The relationship between nuclear receptor estrogen binding and uterotrophic responses. Biochem. Biophys. Res. Commun. 48:1460–1468; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. N.; Peck, E. J., Jr.; Clark, J. H. Nuclear receptor estradiol complex: a requirement for uterotropic responses. Endocrinology 95: 174–178; 1974.

    PubMed  CAS  Google Scholar 

  • Anderson, J. N.; Peck, E. J., Jr.; Clark, J. H. Estrogen-induced uterine responses and growth: relationship to receptor binding by uterine nuclei. Endocrinology 96:160–167; 1975.

    PubMed  CAS  Google Scholar 

  • Aronica, S. M.; Kraus, W. L.; Katzenellenbogen, B. S. Estrogen action via the cAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc. Natl. Acad. Sci. USA 91: 8517–8521; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Arrick, B. A.; Korc, M.; Derynck, R. Differential regulation of expression of three transforming growth factor beta species in human breast cancer cell lines by estradiol. Cancer Res. 50:299–303; 1990.

    PubMed  CAS  Google Scholar 

  • Arteaga, C. L.; Coffey, R. J.; Dugger, T. C., et al. Growth stimulation of human breast cancer cells with anti-transforming growth factor β antibodies: evidence for a negative autocrine regulation by transforming growth factor β. Cell Growth Differ. 1:367–374; 1990.

    PubMed  CAS  Google Scholar 

  • Arteaga, C. L.; Kitten, L. J.; Coronado, E. B., et al. Blockade of the type 1 somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J. Clin. Invest. 84:1418–1423; 1989.

    PubMed  CAS  Google Scholar 

  • Arteaga, C. L.; Tandon, A. K.; von Hoff, D. D., et al. Transforming growth factor β; potential autocrine growth inhibitor of estrogen receptor negative human breast cancer. Cancer Res. 48:3898–3904; 1988.

    PubMed  CAS  Google Scholar 

  • Bansal, G. S.; Cox, H. C.; Marsh, S., et al. Expression of keratinocyte growth factor and its receptor in human breast cancer. Br. J. Cancer 75: 1567–1574; 1997.

    PubMed  CAS  Google Scholar 

  • Barnes, D.; Sato, G. Growth of a human mammary tumor cell line in serum-free medium. Nature (Lond) 281:388–389; 1980.

    Article  Google Scholar 

  • Beato, M. Gene regulation by steroid hormones. Cell 56:335–344; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Bélanger, C.; Veilleux, R.; Labrie, F. Stimulatory effects of androgens, estrogens, progestins, and dexamethasone on growth of the LNCaP human prostate cancer cells. Ann. N.Y. Acad. Sci. 595:399–402; 1990.

    Article  Google Scholar 

  • Berthois, Y.; Katzenellenbogen, J. A.; Katzenellenbogen, B. S. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in tissue culture. Proc. Natl. Acad. Sci. USA 83:2496–2500; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Blum, W. F.; Jenne, E. W.; Reppin, F., et al. Insulin-like growth factor I (IGF-I)-binding protein complex is a better mitogen than free IGF-I. Endocrinology 125:766–772; 1989.

    PubMed  CAS  Google Scholar 

  • Briand, P.; Lykkesfeldt, A. E. Long-term cultivation of a human breast cancer cell line, MCF-7, in a chemically defined medium. Effect of estradiol. Anticancer Res. 6:85–90; 1986.

    PubMed  CAS  Google Scholar 

  • Bronzert, D. A.; Bates, S. E.; Sheridan, J. A., et al. TGFβ induces PDGF mRNA and PDGF secretion while inhibiting growth in normal human mammary epithelial cells. Mol. Endocrinol. 4:981–989; 1990.

    PubMed  CAS  Google Scholar 

  • Butler, W. B.; Kelsey, W. H.; Goran, N., et al. Effects of serum and insulin on the sensitivity of the human breast cancer cell line MCF-7 to estrogen and antiestrogens. Cancer Res. 41:82–88; 1981.

    PubMed  CAS  Google Scholar 

  • Butler, W. B.; Kirkland, W. L.; Gargala, T. L., et al. Steroid stimulation of plasminogen activator production in a human breast cancer cell line (MCF-7). Cancer Res. 43:1637–1641; 1983.

    PubMed  CAS  Google Scholar 

  • Carruba, G.; Leake, R. E.; Rinaldi, F., et al. Steroid-growth factor interaction in human prostate cancer. 1. Short-term effects of transforming growth factors on growth of human prostate cancer cells. Steroids 59:412–420; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Carson-Jurica, M. A.; Schrader, W.; O'Malley, B. Steroid receptor family: structure and functions. Endocr. Rev. 11:201–220; 1990.

    PubMed  CAS  Google Scholar 

  • Castagnetta, L. A.; Carruba, G. Human prostate cancer: a direct role for oestrogens. Ciba Found. Symp. 191:269–286; 1995.

    PubMed  CAS  Google Scholar 

  • Chalbos, D.; Vignon, F.; Keydar, I., et al. Estrogens stimulate cell proliferation in a human breast cancer cell line (T47D). J. Clin. Endocrinol. Metab. 55:276–283; 1982.

    PubMed  CAS  Google Scholar 

  • Clark, D. A.; Coker, R. Transforming growth factor-beta (TGF-beta). Int. J. Biochem. Cell Biol. 30:293–298; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J. H.; Markaverich, B. M. The agonistic and antagonistic effects of short acting estrogens: a review. Pharm. Ther. 21:429–453; 1983.

    Article  CAS  Google Scholar 

  • Cullen, K. J.; Yee, D.; Sly, W. S., et al. Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res. 50:48–53; 1990.

    PubMed  CAS  Google Scholar 

  • Cunha, G. R.; Alarid, E. T.; Turner, T., et al. Normal and abnormal development of the male urogenital tract. Role of androgens, mesenchymal-epithelial interactions, and growth factors. J. Androl. 13:465–475; 1992.

    PubMed  CAS  Google Scholar 

  • Danielpour, D.; Riss, T. L.; Ogasawara, M., et al. Growth of MTW9/PL2 estrogen-responsive rat mammary tumor cells in hormonally defined serum-free media. In Vitro Cell. Dev. Biol. 24:42–52; 1988.

    PubMed  CAS  Google Scholar 

  • Danielpour, D.; Sirbasku, D. A. New perspectives in hormone dependent, responsive and autonomous mammary tumor growth: role of autostimulatory growth factors. In Vitro 20:975–980; 1984.

    PubMed  CAS  Google Scholar 

  • Darbre, P. D.; Curtis, S.; King, R. J. B. Effects of estradiol and tamoxifen on human breast cancer cells in serum-free culture. Cancer Res. 44: 2790–2793; 1984.

    PubMed  CAS  Google Scholar 

  • Darbre, P.; Yates, J.; Curtis, S., et al. Effect of estradiol on human breast cancer cells in culture. Cancer Res. 43:349–355; 1983.

    PubMed  CAS  Google Scholar 

  • de Jong, J. S.; van Diest, P. J.; van der Valk, P., et al. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. I. An inventory in search of autocrine and paracrine loops. J. Pathol. 184:44–52; 1998a.

    Article  PubMed  Google Scholar 

  • de Jong, J. S.; van Diest, P. J.; van der Valk, P., et al. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II. Correlations with proliferation and angiogenesis. J. Pathol. 184:53–57; 1998b.

    Article  PubMed  Google Scholar 

  • de Launoit, Y.; Veilleux, R.; Dufour, M., et al. Characteristics of the biphasic action of androgens and the potent anti-proliferative effects of the new pure antiestrogen EM-139 on cell cycle kinetic parameters in LNCaP human prostatic cancer cells. Cancer Res. 51:5165–5170; 1991.

    PubMed  Google Scholar 

  • De Mellow, J. S. M.; Baxter, R. C. Growth hormone-dependent insulin-like growth factor (IGF) binding protein both inhibits and potentiates IGF-I-stimulated DNA synthesis in human skin fibroblasts. Biochem. Biophys. Res. Commun. 156:199–204; 1988.

    Article  PubMed  Google Scholar 

  • Derynck, R. Transforming growth factor-α. Cell 54:593–595; 1988.

    Article  PubMed  CAS  Google Scholar 

  • DiAugustine, R. P.; Petruez, P.; Bell, G. I., et al. Influences of estrogens on mouse uterine epidermal growth factor precursor protein messenger ribonucleic acid. Endocrinology 122:2355–2363; 1988.

    PubMed  CAS  Google Scholar 

  • Dickson, R. B.; Bates, S. E.; McManaway, M. E., et al. Characterization of estrogen responsive transforming activity in human breast cancer cell lines. Cancer Res. 46:1707–1713; 1986a.

    PubMed  CAS  Google Scholar 

  • Dickson, R. B.; Huff, K. K.; Spencer, E. M., et al. Induction of epidermal growth factor-related polypeptides by 17β-estradiol in MCF-7 human breast cancer cells. Endocrinology 118:138–142; 1985.

    Google Scholar 

  • Dickson, R. B.; Lippman, M. E. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocr. Rev. 8:29–43; 1987.

    PubMed  CAS  Google Scholar 

  • Dickson, R. B.; McManaway, M. E.; Lippman, M. E. Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science (Wash DC) 232:1542–1543; 1986b.

    Google Scholar 

  • Eby, J. E.; Sato, H.; Sirbasku, D. A. Preparation of iron-deficient tissue culture medium by deferoxamine-sepharose treatment and application to the differential actions of apotransferrin and diferric transferrin. Anal. Biochem. 203:317–325; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Eby, J. E.; Sato, H.; Sirbasku, D. A. Apotransferrin stimulation of thyroid hormone dependent rat pituitary tumor cell growth in serum-free chemically defined medium: role of Fe(III) chelation. J. Cell. Physiol. 156:588–600; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, D. P.; Adams, D. J.; Savage, N., et al. Estrogen induced synthesis of specific proteins in human breast cancer cells. Biochem. Biophys. Res. Commun. 93:804–812; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Elgin, R. G.; Busby, W. H., Jr.; Clemmons, D. R. An insulin-like growth factor (IGF) binding protein enhances the biologic response to IGF-I. Proc. Natl. Acad. Sci. USA 84:3254–3258; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Engle, L. W.; Young, N. A.; Tralka, T. S., et al. Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res. 38:3352–3364; 1978.

    Google Scholar 

  • Ethier, S. P. Growth factor synthesis and human breast cancer progression. J. Natl. Cancer Inst. 87:964–973; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science (Wash DC) 240:889–895; 1988.

    Article  CAS  Google Scholar 

  • Furlanetto, R. W.; DiCarlo, J. N. Somatomedin-C receptors and growth effects in human breast cancer cells maintained in long-term tissue culture. Cancer Res. 44:2122–2128; 1984.

    PubMed  CAS  Google Scholar 

  • Gorski, J.; Hansen, J. C. The “one and only” step model of estrogen action. Steroids 49:461–475; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Gorski, J.; Toft, D. O.; Shymala, G., et al. Studies on the interaction of estrogen with the uterus. Recent Prog. Horm. Res. 24:45–80; 1968.

    PubMed  CAS  Google Scholar 

  • Gorski, J.; Welshons, W.; Sakai, D. Review: remodeling the estrogen receptor model. Mol. Cell. Endocrinol. 36:11–15; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D.; Moran, J. S. Growth factors in mammalian cell culture. Annu. Rev. Biochem. 45:531–558; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Goustin, A. S.; Leof, E. B.; Shipley, G. D., et al. Growth factors and cancer. Cancer Res. 46:1015–1029; 1986.

    PubMed  CAS  Google Scholar 

  • Harris, J.; Gorski, J. Evidence for a discontinuous requirement for estrogen in stimulation of deoxyribonucleic acid synthesis in the immature rat uterus. Endocrinology 103:240–245; 1978.

    PubMed  CAS  Google Scholar 

  • Horoszewicz, J. S.; Leong, S. S.; Kawinski, E., et al. LNCaP model of human prostatic carcinoma. Cancer Res. 43:1809–1818; 1983.

    PubMed  CAS  Google Scholar 

  • Horwitz, K. B.; McGuire, W. L. Nuclear mechanisms of estrogen action. Effects of estradiol and antiestrogens on estrogen receptors and nuclear receptor processing. J. Biol. Chem. 253:8185–8191; 1978.

    PubMed  CAS  Google Scholar 

  • Huet-Hudson, Y. M.; Chakraborty, C.; De, S. K., et al. Estrogen regulates synthesis of epidermal growth factor in mouse uterine epithelial cells. Mol. Endocrinol. 4:510–523; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Huff, K. K.; Kaufman, D.; Gabbay, K. J., et al. Human breast cancer cells secrete an insulin-like growth factor-I related polypeptide. Cancer Res. 46:4613–4619; 1986.

    PubMed  CAS  Google Scholar 

  • Huff, K. K.; Knabbe, C.; Lindsey, R., et al. Multihormonal regulation of insulin-like growth factor-I-related protein in MCF-7 human breast cancer cells. Mol. Endocrinol. 2:200–208; 1988.

    PubMed  CAS  Google Scholar 

  • Huseby, R. A.; Maloney, T. M.; McGrath, C. M. Evidence for a direct growth-stimulating effect of estradiol on human MCF-7 cells in vivo. Cancer Res. 44:2654–2659; 1984.

    PubMed  CAS  Google Scholar 

  • Ikeda, T.; Liu, Q.-F.; Danielpour, D., et al. Identification of estrogen-inducible growth factors (estromedins) for rat and human mammary tumor cells in culture. In Vitro 18:961–979; 1982.

    PubMed  CAS  Google Scholar 

  • Iscove, N. N. Culture of lymphocytes and hematopoietic cells in serum-free medium. Methods for serum-free culture of neuronal and lymphoid cells. In: Barnes, D. W.; Sirbasku, D. A.; Sato, G. H., ed. Cell culture methods for molecular and cell biology. Vol. 4. New York: Liss/Wiley; 1984:169–185.

    Google Scholar 

  • Jensen, E. V.; DeSombre, E. R. Estrogen-receptor interaction. Estrogenic hormones effect transformation of specific receptor proteins to a biochemically functional form. Science (Wash DC) 182:126–134; 1973.

    Article  CAS  Google Scholar 

  • Jensen, E. V.; Jacobson, H. I. Basic guides to the mechanism of estrogen action. Recent Prog. Horm. Res. 18:387–414; 1962.

    CAS  Google Scholar 

  • Jensen, E. V.; Suzuki, T.; Kawashima, T., et al. A two-step mechanism for the interaction of estradiol with rat uterus. Proc. Natl. Acad. Sci. USA 59:632–638; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Jozan, S.; Moure, C.; Gillois, M., et al. Effects of estrone on cell proliferation of human breast cancer (MCF-7) in long term tissue culture. J. Steroid Biochem. 10:341–342; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Kano-Sueoka, T. Growth of rat mammary tumor cells in serum-free hormone-supplemented medium. Methods for serum-free culture of cells of the endocrine system. In: Barnes, D. W.; Sirbasku, D. A.; Sato, G.H., ed. Cell culture methods for molecular and cell biology. Vol. 2. New York: Liss/John Wiley; 1984:89–104.

    Google Scholar 

  • Karey, K. P.; Sirbasku, D. A. Differential responsiveness of the human breast cancer cell lines MCF-7 and T47-D to growth factors and 17β-estradiol. Cancer Res. 48:4083–4092; 1988.

    PubMed  CAS  Google Scholar 

  • Katzenellenbogen, B. S. Dynamics of steroid hormone receptor action. Annu. Rev. Physiol. 42:17–35; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen, B. S. Biology and receptor interactions of estriol and estriol derivatives in vitro and in vivo. J. Steroid Biochem. 20:1033–1037; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen, B. S. Estrogen receptors: bioactivities and interactions with cell signaling pathways. Biol. Reprod. 54:287–293; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen, B. S.; Kendra, K. L.; Norman, M. J., et al. Proliferation, hormonal responsiveness, and estrogen receptor content of MCF-7 human breast cancer cells grown in the short-term and long-term absence of estrogens. Cancer Res. 47:4355–4360; 1987.

    PubMed  CAS  Google Scholar 

  • Kenney, N. J.; Saeki, T.; Gottardis, M., et al. Expression of transforming growth factor α antisense mRNA inhibits the estrogen-induced production of TGFα and estrogen-induced proliferation of estrogen-responsive human breast cancer cells. J. Cell. Physiol. 156:497–514; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Keydar, I.; Chen, L.; Karby, S., et al. Establishment and characterization of a cell line of human breast carcinoma origin. Eur. J. Cancer 15:659–670; 1979.

    PubMed  CAS  Google Scholar 

  • Kim, I. Y.; Kim, J.-H.; Zelner, D. J., et al. Transforming growth factor-β1 is a mediator of androgen-regulated growth arrest in an androgen-responsive prostatic cancer cell line, LNCaP. Endocrinology 137:991–999; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kirkland, W. L.; Sorrentino, J. M.; Sirbasku, D. A. Control of cell growth. III. Demonstration of the direct mitogenic effect of thyroid hormones on an estrogen-dependent rat pituitary tumor cell line. J. Natl. Cancer Inst. 56:1159–1164; 1976.

    PubMed  CAS  Google Scholar 

  • Knabbe, C.; Lippman, M. E.; Wakefield, L. M., et al. Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48:417–428; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Laursen, I.; Briand, P.; Lykkesfeldt, A. E. Serum albumin as a modulator on growth of the human breast cancer cell line, MCF-7. Anticancer Res. 10:343–352; 1990.

    PubMed  CAS  Google Scholar 

  • Lee, C.; Sutkowski, D. M.; Sensibar, J. A., et al. Regulation of proliferation and production of prostate specific antigen in androgen-sensitive prostatic cancer cells, LNCaP, by dihydrotestosterone. Endocrinology 136:796–803; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Leland, F. E.; Danielpour, D.; Sirbasku, D. A. Studies of the endocrine, paracrine, and autocrine control of mammary tumor cell growth. In: Sato, G. H.; Pardee, A. B.; Sirbasku, D. A., ed. Cold Spring Harbor Conferences on Cell Proliferation. Vol. 9. Growth of cells in hormonally defined media. New York: Cold Spring Harbor Press; 1982:741–750.

    Google Scholar 

  • Leland, F. E.; Iio, M.; Sirbasku, D. A. Hormone-dependent cell lines. In: Sato, G. H., ed. Functional differentiated cell lines. New York: Liss/Wiley; 1981:1–46.

    Google Scholar 

  • Lippman, M. E.; Bolan, G.; Huff, K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 36:4595–4601; 1976.

    PubMed  CAS  Google Scholar 

  • Lippman, M. E.; Dickson, R. B.; Kasid, A., et al. Autocrine and paracrine growth regulation of human breast cancer. J. Steroid Biochem. 24: 147–154; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Lippman, M. E.; Manaco, M. E.; Bolan, G. Effects of estrone, estradiol, and estriol on hormone responsive human breast cancer in long term tissue culture. Cancer Res. 37:1901–1907; 1977.

    PubMed  CAS  Google Scholar 

  • Liu, S. C.; Sanfilippo, B.; Perroteau, I., et al. Expression of transforming growth factor α (TGFα) in differentiated rat mammary tumors: estrogen induction of TGFα production. Mol. Endocrinol. 1:683–692; 1987.

    PubMed  CAS  Google Scholar 

  • Lykkesfeldt, A. E.; Briand, P. Indirect mechanism of oestradiol stimulation of cell proliferation of human breast cancer cell lines. Br. J. Cancer 53:29–35; 1986.

    PubMed  CAS  Google Scholar 

  • MacIndoe, J. H.; Woods, G. R.; Etre, L. A. The specific binding of estradiol and estrone and the subsequent distribution of estrogen-receptor complexes within MCF-7 human breast cancer cells. Steroids 39:245–258; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Markaverich, B. M.; Clark, J. H. Two binding sites for estradiol in rat uterine nuclei: relationship to uterotropic response. Endocrinology 105:1458–1462; 1979.

    PubMed  CAS  Google Scholar 

  • Massagué, J. TGF-beta signal transduction. Annu. Rev. Biochem. 67:753–791; 1998.

    Article  PubMed  Google Scholar 

  • Minuto, E.; Del Monte, P.; Barreca, A., et al. Partial characterization of somatomedin C-like immunoreactivity secreted by breast cancer cells in vitro. Mol. Cell. Endocrinol. 54:179–184; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Cuevas, J. E.; Sirbasku, D. A. Estrogen mitogenic action. I. Demosonstration of estrogen-dependent MTW9/PL2 carcinogen-induced rat mammary tumor cell growth in serum supplemented culture and technical implications. In Vitro Cell. Dev. Biol. 36(7):410–427; 2000a.

    Article  CAS  Google Scholar 

  • Moreno-Cuevas, J. E.; Sirbasku, D. A. Estrogen mitogenic action. III. Is phenol red a “red herring”? In Vitro Cell. Dev. Biol. 36(7):447–464; 2000b.

    Article  CAS  Google Scholar 

  • Morisset, M.; Capony, F.; Rochefort, H. The 52-kDa estrogen-induced protein secreted by MCF-7 cells is a lysosomal acidic protease. Biochem. Biophys. Res. Commun. 138:102–109; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, L. J.; Ghahary, A. Uterine insulin-like growth factor-1: Regulation of expression and its role in estrogen-induced uterine proliferation. Endocr. Rev. 11:443–453; 1990.

    PubMed  CAS  Google Scholar 

  • Murphy, L. J.; Murphy, L. C.; Friesen, H. G. A role for the insulin-like growth factors as estromedins in the rat uterus. Trans. Assoc. Am. Phys. 100: 204–214; 1987.

    PubMed  CAS  Google Scholar 

  • Myal, Y.; Shiu, R. P. C.; Bhaumick, B., et al. Receptor bindingd and growth-promoting activity of insulin-like growth factors in human breast cancer cells (T-47D) in culture. Cancer Res. 44:5486–5490; 1984.

    PubMed  CAS  Google Scholar 

  • Natoli, C.; Sica, G.; Natoli, V., et al. Two new estrogen-suppressitive variants of the MCF-7 human breast cancer cell line. Breast Cancer Res. Treat. 3:23–32; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Normanno, N.; Ciardiello, F.; Brandt, R., et al. Epidermal growth factor-related peptides in the pathogenesis of human breast cancer. Breast Cancer Res. Treat. 29:11–27; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara, M.; Sirbasku, D. A. A new serum-free method of measuring growth factor activities for human breast cancer cells in culture. In Vitro Cell. Dev. Biol. 24:911–920; 1988.

    PubMed  CAS  Google Scholar 

  • O'Malley, B. W. The steroid receptor superfamily: more excitement predicted for the future. Mol. Endocrinol. 4:363–369; 1990.

    PubMed  Google Scholar 

  • O'Malley, B. W.; Means, A. R. Female steroid hormones and target cell nuclei. Science (Wash DC) 183:610–620; 1974.

    Article  Google Scholar 

  • Osborne, C. K.; Coronado, E. B.; Kitten, L. J., et al. Insulin-like growth factor-II (IGF-II): a potential autocrine/paracrine growth factor for human breast cancer acting via the IGF-I receptor. Mol. Endocrinol. 3:1701–1709; 1989.

    PubMed  CAS  Google Scholar 

  • Page, M. J.; Field, K. J.; Everett, N. P., et al. Serum regulation of the estrogen responsiveness of the human breast cancer cell line MCF-7. Cancer Res. 43:1244–1250; 1983.

    PubMed  CAS  Google Scholar 

  • Peehl, D. M.; Rubin, J. S. Keratinocyte growth factor: an androgen-regulated mediator of stromal-epithelial interactions in the prostate. World J. Urol. 13:312–317; 1995.

    PubMed  CAS  Google Scholar 

  • Peehl, D. M.; Wong, S. T.; Rubin, J. S. KGF and EGF differentially regulate the phenotype of prostatic epithelial cells. Growth Regul. 6:22–31; 1996.

    PubMed  CAS  Google Scholar 

  • Ramsdell, J. S. Transforming growth factor-alpha and-beta are potent and effective inhibitors of GH4 pituitary tumor cell proliferation. Endocrinology 128:1981–1990; 1991.

    PubMed  CAS  Google Scholar 

  • Rechler, M.; Zapf, J.; Nissley, S. P., et al. Interactions of insulin-like growth factors I and II and multiplication-stimulating activity with receptors and serum carrier proteins. Endocrinology 107:1451–1459; 1980.

    PubMed  CAS  Google Scholar 

  • Reddy, K. B.; Yee, D.; Hilsenbeck, S. G., et al. Inhibition of estrogen-induced breast cancer cell proliferation by reduction in autocrine transforming growth factor alpha expression. Cell Growth Differ. 5:1275–1282; 1994.

    PubMed  CAS  Google Scholar 

  • Reese, C. C.; Warshaw, M. L.; Murai, J. T., et al. Alternative models for estrogen and androgen regulation of human breast cancer cell (T47D) growth. Ann. N.Y. Acad. Sci. 538:112–121; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Renoir, J.-M.; Mercier-Bodard, C.; Baulieu, E.-E. Hormonal and immunological aspects of the phylogeny of sex steroid binding plasma protein. Proc. Natl. Acad. Sci. USA 77:4578–4582; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Reny, J.-C.; Soto, A. M. Human serum does not contain a high affinity estrogen-binding glycoprotein different from sex hormone-binding globulin. J. Clin. Endocrinol. Metab. 68:938–945; 1989.

    PubMed  CAS  Google Scholar 

  • Riss, T. L.; Sirbasku, D. A. Rat pituitary tumor cells in serum-free culture. II. Serum factor and thyroid hormone requirements for estrogen-responsive growth. In Vitro Cell. Dev. Biol. 25:136–142; 1989.

    PubMed  CAS  Google Scholar 

  • Rochefort, H.; Capony, F.; Garcia, M., et al. Estrogen-induced lysosomal proteases secreted by breast cancer cells: a role in carcinogenesis? J. Cell Biochem. 35:17–29; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Ruedl, C.; Cappelletti, V.; Coradini, D., et al. Influence of culture conditions on the estrogenic cell growth stimulation of human breast cancer cells. J. Steroid Biochem. Mol. Biol. 37:195–200; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Salomon, D. S.; Zwiebel, J. A.; Bano, M., et al. Presence of transforming growth factors in human breast cancer cells. Cancer Res. 44:4069–4077; 1984.

    PubMed  CAS  Google Scholar 

  • Sato, H.; Eby, J. E.; Sirbasku, D. A. Iron is deleterious to hormone-responsive pituitary cell growth in serum-free defined medium. In Vitro Cell. Dev. Biol. 27A:599–602; 1991.

    PubMed  CAS  Google Scholar 

  • Schatz, R. W.; Soto, A. M.; Sonnenschein, C. Effects of interaction, between estradiol-17β and progesterone on proliferation of cloned breast tumor cells (MCF-7 and T47D). J. Cell. Physiol. 124:386–390; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, J. The chemical basis of chelation. In: Gross, F., ed. Iron metabolism. Berlin: Springer; 1964:466–498.

    Google Scholar 

  • Schuurmans, A. L. G.; Bolt, J.; Mulder, E. Androgens stimulate both the growth rate and epidermal growth factor receptor activity of the human prostate tumor cell line LNCaP. The Prostate 12:55–64; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Seibert, K.; Shafie, S. M.; Triche, T. J., et al. Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice. Cancer Res. 43:2223–2239; 1983.

    PubMed  CAS  Google Scholar 

  • Shafie, S. M. Estrogen and growth of breast cancer. New evidence suggests indirect action. Science (Wash DC) 209:701–702; 1980.

    Article  CAS  Google Scholar 

  • Silberstein, G. B.; Daniel, C. W. Reversible inhibition of mammary gland growth by transforming growth factor-β. Science (Wash DC) 237:291–293; 1987.

    Article  CAS  Google Scholar 

  • Silberstein, G. B.; Flanders, K. C.; Roberts, A. B., et al. Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-β1. Dev. Biol. 152:354–362; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sirbasku, D. A. Estrogen-induction of growth factors specific for hormone-responsive mammary, pituitary, and kidney tumor cells. Proc. Natl Acad. Sci. USA 75:3786–3790; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Sirbasku, D. A. New concepts in control of estrogen-responsive tumor growth. Banbury Rep. 8:425–443; 1981.

    CAS  Google Scholar 

  • Sirbasku, D. A.; Benson, R. H. Estrogen-inducible growth factors that may act as mediators (estromedins) of estrogen promoted tumor cell growth. In: Sato, G. H., Ross, R., ed. Hormones and cell culture. Cold Spring Harbor Conferences on Cell Proliferation. Vol. 6. New York: Cold Spring Harbor Laboratory; 1979:477–497.

    Google Scholar 

  • Sirbasku, D. A.; Kirkland, W. L. Control of cell growth. IV. Growth properties of a new cell line established from an estrogen-dependent tumor of the Syrian hamster. Endocrinology 98:1260–1272; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Sirbasku, D. A.; Leland, F. E. Proposal of new mechanisms of estrogen-promoted tumor cell growth. In: Litwack, G., ed. Biochemical actions of hormones. Vol. 9. New York: Academic Press; 1982:115–140.

    Google Scholar 

  • Sirbasku, D. A.; Moreno-Cuevas, J. E.; Walterscheid, J. P. Serum factor regulation of estrogen responsive mammary tumor cell growth [abstract]. Proceedings of the 1997 Meeting of the “Department of Defense Breast Cancer Research Program: An Era of Hope”, pp. 739–740. Washington, D. C., 31 October through 4 November 1997.

  • Sonnenschein, C.; Olea, N.; Pasanen, M. E., et al. Negative controls of cell proliferation: human prostate cancer cells and androgens. Cancer Res. 49:3474–3481; 1989.

    PubMed  CAS  Google Scholar 

  • Sonnenschein, C.; Soto, A. M. But … are estrogens per se growth promoting hormones? J. Natl. Cancer Inst. 64:211–215; 1980.

    PubMed  CAS  Google Scholar 

  • Sonnenschein, C.; Soto, A. M.; Michaelson, C. L. Human serum albumin shares the properties of estrocolyone-I, the inhibitor of the proliferation of estrogen-target cells. J. Steroid Biochem. Mol. Biol. 59:147–154; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Sorrentino, J. M.; Kirkland, W. L.; Sirbasku, D. A. Control of cell growth. I. Estrogen-dependent growth in vivo of a rat pituitary tumor cell line. J. Natl. Cancer Inst. 56:1149–1154; 1976.

    PubMed  CAS  Google Scholar 

  • Soto, A. M.; Bass, J. C.; Sonnenschein, C. Proliferative behavior of the cloned Syrian hamster tumor cells H301. Cancer Res. 48:3676–3680; 1988.

    PubMed  CAS  Google Scholar 

  • Soto, A. M.; Murai, J. T.; Siiteri, P. K., et al. Control of cell proliferation: evidence for negative control on estrogen-sensitive T47D human breast cancer cells. Cancer Res. 46:2271–2275; 1986.

    PubMed  CAS  Google Scholar 

  • Soto, A. M.; Silvia, R. M.; Sonnenschein, C. A plasma-borne inhibitor of the proliferation of human estrogen-sensitive breast tumor cells (estrocolyone-1). J. Steroid Biochem. Mol. Biol. 43:703–712; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Soto, A. M.; Sonnenschein, C. Mechanism of estrogen action on cellular proliferation: evidence for indirect and negative control on cloned breast tumor cells. Biochem. Biophys. Res. Commun. 122:1097–1103; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Soto, A. M.; Sonnenschein, C. The role of estrogens on proliferation of human breast tumor cells (MCF-7). J. Steroid Biochem. 23:87–94; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Soto, A. M.; Sonnenschein, C. Cell proliferation of estrogen-sensitive cells: the case for negative regulation. Endocr. Rev. 8:44–52; 1987.

    PubMed  CAS  Google Scholar 

  • Soule, H. D.; Vazquez, J.; Long, A., et al. A human cell line from a pleural effusion from a breast carcinoma. J. Natl. Cancer Inst. 51:1409–1416; 1973.

    PubMed  CAS  Google Scholar 

  • Spiro, T. G.; Allerton, S. E.; Renner, J., et al. The hydrolytic polymerization of iron (III). J. Am. Chem. Soc. 88:2721–2726; 1966.

    Article  CAS  Google Scholar 

  • Sporn, M. B.; Todaro, G. J. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303:878–880; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Stack, G.; Gorski, J. Direct mitogenic effect of estrogen on the prepuberal rat uterus: studies on isolated nuclei. Endocrinology 115:1141–1150; 1984.

    PubMed  CAS  Google Scholar 

  • Stewart, A. J.; Johnson, M. D.; May, F. E., et al. Role of insulin-like growth factors and the type I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells. J. Biol. Chem. 265:21,172–21,178; 1990.

    CAS  Google Scholar 

  • Tashjian, A. H. Jr. Clonal strains of hormone-producing pituitary cells. Methods Enzymol. 58:527–535; 1979.

    Article  PubMed  Google Scholar 

  • Tashjian, A. H., Jr.; Bancroft, F. C.; Levine, L. Production of both prolactin and growth hormone by clonal strains of rat pituitary tumor cells: differential effects of hydrocortisome and tissue extracts. J. Cell. Biol. 47:61–70; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Tashjian, A. H., Jr.; Yasumura, Y.; Levine, L., et al., Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82:342–352; 1968.

    PubMed  CAS  Google Scholar 

  • Truss, M.; Beato, M. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr. Rev. 14:459–479; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, M. J.; O'Malley, B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63:451–486; 1994.

    Article  PubMed  CAS  Google Scholar 

  • van der Burg, B.; Rutteman, G. R.; Blankenstein, M. A., et al. Mitogenic stimulation of human breast cancer cells in a growth factor-defined medium: synergistic action of insulin and estrogen. J. Cell. Physiol. 134:101–108; 1988.

    Article  PubMed  Google Scholar 

  • Veldscholte, J.; Ris-Stalpers, C.; Kuiper, G. G. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and responses to anti-androgens. Biochem. Biophys. Res. Commun. 173:534–540; 1990a.

    Article  PubMed  CAS  Google Scholar 

  • Veldscholte, J.; Voorhorst-Ogink, M. M.; Bolt-de Vries, J., et al. Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progrestagenic and estrogenic steroids. Biochim. Biophys. Acta 1052:187–194; 1990b.

    Article  PubMed  CAS  Google Scholar 

  • Vignon, F.; Capony, F.; Chambon, M., et al. Autocrine growth stimulation of the MCF-7 breast cancer cells by the estrogen-regulated 52K protein. Endocrinology 118:1537–1545; 1986.

    PubMed  CAS  Google Scholar 

  • Wiese, T. E.; Kral, L. G.; Dennis, K. E., et al. Optimization of estrogen growth response in MCF-7 cells. In Vitro Cell. Dev. Biol. 28A:595–602; 1992.

    PubMed  CAS  Google Scholar 

  • Wilding, G.; Zugmeier, G.; Knabbe, C., et al. Differential effects of transforming growth factor beta on human prostate cancer cells in vitro. Mol. Cell. Endocrinol. 62:79–87; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K. R. Steroid receptor-regulated transcription of specific genes and gene networks. Annu. Rev. Genet. 19:209–252; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Yasumura, Y.; Tashjian, A. H., Jr.; Sato, G. Establishment of four functional clonal strains of animal cells in culture. Science (Wash DC) 154: 1186–1189; 1966.

    Article  CAS  Google Scholar 

  • Yee, D.; Cullen, K. J.; Paik, S., et al. Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res. 48:6691–6696; 1988.

    PubMed  CAS  Google Scholar 

  • Yee, D.; Favoni, R. E.; Lippman, M. E., et al. Identification of insulin-like growth factor binding proteins in breast cancer cells. Breast Cancer Res. Treat. 18:3–10; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Zapf, J.; Schoenle, E.; Jagars, G., et al. Inhibition of the action of nonsupressible insulin-like activity on isolated rat fat cells by binding to its carrier protein. J. Clin. Invest. 63:1077–1084; 1978.

    Google Scholar 

  • Zava, D. T.; McGuire, W. L. Human breast cancer: androgen action mediated by estrogen receptor. Science (Wash DC) 199:787–788; 1978.

    Article  CAS  Google Scholar 

  • Zugmaier, G.; Ennis, B. W.; Deschauer, B., et al. Transforming growth factors type β1 and β2 are equipotent growth inhibitors of human breast cancer cell lines. J. Cell Physiol. 141:353–361; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Zugmaier, G.; Knabbe, C.; Fritsch, C., et al. Tissue culture conditions determine the effects of estrogen and growth factors on the anchorage independent growth of human breast cancer cell lines. J. Steroid Biochem. Mol. Biol. 39:681–685; 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sirbasku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirbasku, D.A., Moreno-Cuevas, J.E. Estrogen mitogenic action. II. Negative regulation of the steroid hormone-responsive growth of cell lines derived from human and rodent target tissue tumors and conceptual implications. In Vitro Cell.Dev.Biol.-Animal 36, 428–446 (2000). https://doi.org/10.1290/1071-2690(2000)036<0428:EMAINR>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0428:EMAINR>2.0.CO;2

Key words

Navigation