Skip to main content

Advertisement

Log in

Development of a continuous cell line, PBLE, from an American eel peripheral blood leukocyte preparation

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A continuous cell line, PBLE, was developed from the adherent cells in a culture of peripheral blood leukocytes from the American eel, Anguilla rostrata. The cells were grown in Leibovitz's L-15 basal medium supplemented with 20% fetal bovine serum (FBS). Under normal culture conditions at 18° C, the morphology of PBLE was fibroblast-like. The cultures have been subcultured over 80 times and have been cryopreserved successfully. These cells have a diploid karyotype of 38 chromosomes, survived temperatures from 5 to 36° C, and proliferated at temperatures from 5° C to at least 30° C. PBLE underwent apoptosis in response to gliotoxin, but did not show a respiratory burst. Results suggest that PBLE may have arisen from a circulating mesenchymal stem cell. PBLE was susceptible to Chum salmon reovirus (CSV) and supported CSV replication. Therefore this cell line should be useful in studying eel specific virus-host interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, W. G.; McKinley, R. S.; Colavecchia, M. The use of clove oil as an anesthetic for rainbow trout and its effects on swimming performance. North Am. J. Fish. Manage. 17:301–307; 1997.

    Article  Google Scholar 

  • Bols, N. C.; Dayeh, V. R.; Lee, L. E. J.; Schirmer, K. Use of fish cell lines in toxicology and ecotoxicology of fish. In: Moon, T. W.; Mommsen, T. P., ed. Biochemistry and molecular biology of fishes: environmental toxicology. Amsterdam: Elsevier Science; 2005:43–82.

    Google Scholar 

  • Bols, N. C.; Lee, L. E. J. Cell lines: availability, propagation and isolation. In: Hochachka, P. W.; Mommsen, T. P., ed. Biochemistry and molecular biology of fishes. Amsterdam: Elsevier Science; 1994:145–159.

    Google Scholar 

  • Bols, N. C.; Mosser, D. D.; Steels, G. B. Temperature studies and recent advances with fish cells in vitro. Comp. Biochem. Physiol. 103A:1–14; 1992.

    Article  Google Scholar 

  • Brubacher, J. L.; Bols, N. C. Chemically de-activated 2′, 7′-dichlorodihydrofluorescein diacetate as a probe of respiratory burst activity in mononuclear phagocytes. J. Immunol. Methods 251:81–91; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. D.; Yew, F. H.; Li, G. C. Thermal adaptation and heat-shock response of tilapia ovary cells. J. Cell. Physiol. 134:189–199; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S. N.; Kou, G. H. Establishment, characterization and application of 14 cell lines from warm-water fish. In: Kuroda, Y.; Kurstak, E.; Maramorosch, K., ed. Invertebrate and fish tissue culture. Tokyo: Japan Scientific Societies Press; 1987:218–227.

    Google Scholar 

  • Chen, T. R. In situ detection of mycoplasma contamination in cell cultures by Hoechst 33258 stain. Exp. Cell Res. 104:255–262; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, P.; Tyler, K. L. Reovirus-induced apoptosis: a minireview. Apoptosis 8:141–150; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, C.; Gottgens, B.; Kinston, S.; Ellwart, J.; Huss, R. GATA transcription in a small rhodamine 123(low)CD34(+) subpopulation of a peripheral blood-derived CD34(−)CD105(+) mesenchymal cell line. Exp. Hematol. 30:887–895; 2002.

    Article  PubMed  CAS  Google Scholar 

  • DeWitte-Orr, S. J.; Bols, N. C. Gliotoxin-induced cytotoxicity in three salmonid cell lines: cell death by apoptosis and necrosis. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 141:157–167; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Faisal, M.; Ahne, W. A cell line (CLC) of adherent peripheral blood mononuclear leucocytes of normal common carp Cyprinus carpio. Dev. Comp. Immunol. 14:255–260; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Freshney, R. I. Characterization. In: Culture of animal cells: a manual of basic techniques. 3rd ed. New York: Wiley-Liss; 1994:197–217.

    Google Scholar 

  • Fryer, J. L.; Lannan, C. N. Three decades of fish cell culture: a current listing of cell lines derived from fishes. Methods Cell Sci. 16:87–94; 1994.

    Google Scholar 

  • Ganassin, R. C.; Sanders, S. M.; Kennedy, C. J.; Joyce, E. M.; Bols, N. C. Development and characterization of a cell line from Pacific herring, Clupea harengus pallasi, sensitive to both naphthalene cytotoxicity and infection by viral hemorrhagic septicemia virus. Cell Biol. Toxicol. 15:299–309; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ganassin, R. C.; Schirmer, K.; Bols, N. C. Cell and tissue culture. In: Ostrander, G. K., ed. The handbook of experimental animals: the laboratory fish. London: Academic Press; 2000:631–651.

    Google Scholar 

  • Garrick, R. A. Isolation and culture of capillary endothelial cells from the eel, Anguilla rostrata. Microvasc. Res. 59:377–385; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Garrick, R. A.; Woodin, B. R.; Stegeman, J. J. Cytochrome P4501A induced differentially in endothelial cells cultured from different organs of Anguilla rostrata. In Vitro Cel. Dev. Biol. Anim. 41:57–63; 2005.

    Article  CAS  Google Scholar 

  • Haro, A.; Richkus, W.; Whalen, K.; Hoar, A.; Busch, W. D.; Lary, S.; Brush, T.; Dixon, D. Population decline of the American eel: implications for research and management. Fisheries 25:7–16; 2000.

    Article  Google Scholar 

  • Hogan, R. J.; Taylor, W. R.; Cuchens, M. A.; Naftel, J. P.; Clem, L. W.; Miller, N. W.; Chinchar, V. G. Induction of target cell apoptosis by channel catfish cytotoxic cells. Cell. Immunol. 195:110–118; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kang, M. S.; Oh, M. J.; Kim, Y. J.; Kawai, K.; Jung, S. J. Establishment and characterization of two new cell lines derived from flounder, Paralichthys olilvaceus (Temminck & Schlegel). J. Fish Dis. 26:657–665; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Karber, J. Beitrag zur kollektiven behandlung pharmakologischer reihenversuch. Arch. Exp. Pathol. Pharmakol. 162:480–483; 1931.

    Article  Google Scholar 

  • Khakoo, A. Y.; Finkel, T. Endothelial progenitor cells. Annu. Rev. Med. 56:79–101; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kolenko, V.; Uzzo, R. G.; Bukowski, R.; Bander, N. H.; Novick, A. C.; Hsi, E. D.; Finke, J. H. Dead or dying: necrosis versus apoptosis in caspase-deficient human renal cell carcinoma. Cancer Res. 59:2838–2842; 1999.

    PubMed  CAS  Google Scholar 

  • Kuwana, M.; Okazaki, Y.; Kodama, H.; Izumi, K.; Yasuoka, H.; Ogawa, Y.; Kawakami, Y.; Ikeda, Y. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J. Leuk. Biol. 74:833–845; 2003.

    Article  CAS  Google Scholar 

  • Lecomte-Finiger, R. The genus Anguilla Schrank, 1798: current state of knowledge and questions. Rev. Fish Biol. Fish. 13:265–279; 2003.

    Article  Google Scholar 

  • Lupiani, B.; Subramanian, K.; Samal, S. K. Aquareoviruses. Annu. Rev. Fish Dis. 5:175–208; 1995.

    Article  Google Scholar 

  • Mesner, P. W. Jr.; Kaufman, S. H. Methods utilized in the study of apoptosis. Adv. Pharmacol. 41:57–87; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Miller, N. W.; Rycyzyn, M. A.; Wilson, M. R.; Warr, G. W.; Naftel, J. P.; Clem, L. W. Development and characterization of channel catfish long-term B-cell lines. J. Immunol. 152:2180–2189; 1994.

    PubMed  CAS  Google Scholar 

  • Mutunga, M.; Fulton, B.; Bullock, R.; Batchelor, A.; Gascoigne, A.; Gillespie, J. L.; Baudouin, S. V. Circulating endothelial cells in patients with septic shock. Am. J. Resp. Crit. Care Med. 163:195–200; 2001.

    PubMed  CAS  Google Scholar 

  • Nicholson, B. L.; Danner, D. J.; Wu, J. L. Three new continuous cell-lines from marine fishes of Asia. In Vitro Cell. Dev. Biol. 23:199–204; 1987.

    Article  Google Scholar 

  • Nielsen, M. E.; Esteve-Gassent, M. D. The eel immune system: present knowledge and need for research. J. Fish Dis. 29:65–98; 2006.

    Article  PubMed  CAS  Google Scholar 

  • O'Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267:5421–5426; 2000.

    Article  PubMed  Google Scholar 

  • Roufosse, C. A.; Direkze, N. C.; Otto, W. R.; Wright, N. A. Circulating mesenchymal stem cells. Int. J. Biochem. Cell. Biol. 36:585–597; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer, K.; Chan, A. G. J.; Greenberg, G. M.; Dixon, D. G.; Bols, N. C. Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture. Toxicol. In Vitro 11:107–119; 1997.

    Article  CAS  Google Scholar 

  • Scott, W. B.; Crossman, E. J. Freshwater fishes of Canada. Bull. Fish. Res. Board Can. 184:623–629; 1973.

    Google Scholar 

  • Shen, L.; Stuge, T. B.; Zhou, H., et al. Channel catfish cytotoxic cells: a minireview. Dev. Comp. Immunol. 26:141–149; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Simper, D.; Stalboerger, P. G.; Panetta, C. J.; Wang, S.; Caplice, N. M. Smooth muscle progenitor cells in human blood. Circulation 106:1199–1204; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sola, L.; Gentili, G.; Cataudella, S. Eel chromosomes—cytotaxonomical interrelationships and sex-chromosomes. Copeia 4:911–913; 1980.

    Article  Google Scholar 

  • Stanzani, M.; Orciuolo, E.; Lewis, R.; Kontoyiannis, D. P.; Martins, S. L. R.; St John, L. S.; Komanduri, K. V. Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood 105:2258–2265; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Stone, R. Freshwater eels are slip-sliding away. Science 302:221–222; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Vallejo, A. N.; Ellsaesser, C. F.; Miller, N. W.; Clem, L. W. Spontaneous development of functionally active long-term monocyte like cell lines from channel catfish. In Vitro Cell. Dev. Biol. 27A:279–286; 1991.

    PubMed  CAS  Google Scholar 

  • van Ginneken, V.; Ballieux, B.; Willemze, K.; Coldenhoff, K.; Lentjes, E.; Antonissen, E.; Haenen, O.; van den Thillart, G. Hematology patterns of migrating European eels and role of EVEX virus. Comp. Biochem. Physiol., C 140:97–102; 2005.

    Google Scholar 

  • Weyts, F. A. A.; Rombout, J. H. W. M.; Flik, G.; Verburg van Kemenade, B. M. L. A common carp (Cyprinus carpio L.) leucocyte cell line shares morphological and functional characteristics with macrophages. Fish Shell. Immunol. 7:123–133; 1997.

    Article  Google Scholar 

  • Wirth, T.; Bernatchez, L. Decline of North Atlantic eels: a fatal synergy? Proc. R. Soc. Lond. B. Biol. Sci. 270:681–688; 2003.

    Article  Google Scholar 

  • Zhao, Y.; Glesne, D.; Huberman, E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc. Nat. Acad. Sci. USA 100:2426–2431; 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Bols.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewitte-Orr, S.J., Lepic, K., Bryson, S.P. et al. Development of a continuous cell line, PBLE, from an American eel peripheral blood leukocyte preparation. In Vitro Cell.Dev.Biol.-Animal 42, 263–272 (2006). https://doi.org/10.1290/0604023.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0604023.1

Key words

Navigation