Skip to main content
Log in

Myoepithelial molecular markers in human breast carcinoma PMC42-LA cells are induced by extracellular matrix and stromal cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The microenvironment plays a key role in the cellular differentiation of the two main cell lineages of the human breast, luminal epithelial, and myoepithelial. It is not clear, however, how the components of the microenvironment control the development of these cell lineages. To investigate how lineage development is regulated by 3-D culture and microenvironment components, we used the PMC42-LA human breast carcinoma cell line, which possesses stem cell characteristics. When cultured on a two-dimensional glass substrate, PMC42-LA cells formed a monolayer and expressed predominantly luminal epithelial markers, including cytokeratins 8, 18, and 19; E-cadherin; and sialomucin. The key myoepithelial-specific proteins α-smooth muscle actin and cytokeratin 14 were not expressed. When cultured within Engelbreth-Holm-Swarm sarcoma-derived basement membrane matrix (EHS matrix), PMC42-LA cells formed organoids in which the expression of luminal markers was reduced and the expression of other myoepithelial-specific markers (cytokeratin 17 and P-cadherin) was promoted. The presence of primary human mammary gland fibroblasts within the EHS matrix induced expression of the key myoepithelial-specific markers, α-smooth muscle actin and cytokeratin 14. Immortalized human skin fibroblasts were less effective in inducing expression of these key myoepithelial-specific markers. Confocal dual-labeling showed that individual cells expressed luminal or myoepithelial proteins, but not both. Conditioned medium from the mammary fibroblasts was equally effective in inducing myoepithelial marker expression. The results indicate that the myoepithelial lineage is promoted by the extracellular matrix, in conjunction with products secreted by breast-specific fibroblasts. Our results demonstrate a key role for the breast microenvironment in the regulation of breast lineage development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackland, M. L.; Michalczyk, A.; Whitehead, R. H. PMC42, a novel model for the differentiated human breast. Exp. Cell Res. 263:14–22; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ackland, L.; Newgreen, D.; Fridman, M.; Waltham, M.; Arvanitis, A.; Minichiello, J.; Proce, J.; Thompson, E. Epidermal growth factor-induced epithelio-mesenchymal transition in human breast carcinoma cells. Lab. Invest. 83(3):1–14; 2003.

    Google Scholar 

  • Alvi, A. J.; Clayton, H.; Joshi, C.; Enver, T.; Ashworth, A.; Vivanco, M. D. M.; Dale, T. C.; Smalley, M. Functional and molecular characterisaion of mammary side population cells. Breast Cancer Res. Treat. 5(1):R1-R8; 2002.

    Google Scholar 

  • Barcellos-Hoff, M. H.; Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60(5):1254–1260; 2000.

    PubMed  CAS  Google Scholar 

  • Barsky, S. H. Myoepithelial mRNA expression profiling reveals a common tumor-suppressor phenotype. Exp. Mol. Pathol. 74(2):113–122; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick, N. A.; Neilson, E. G.; Moses, H. L. Stroinal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bissell, M. J.; Radisky, D., Putting tumours in context. Natl. Rev. Cancer 1(1):46–54; 2001.

    Article  CAS  Google Scholar 

  • Bocker, W.; Moll, R.; Poremba, C., et al. Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new biological cell concept. Lab. Invest. 82(6):737–745; 2002.

    PubMed  Google Scholar 

  • Daniel, C. W.; Strickland, P.; Friedmann Y. Expression and functional role of E- and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev. Biol. 169(2):511–519; 1995.

    Article  PubMed  CAS  Google Scholar 

  • DEugnier, M. A.; Faraldo, M. M.; Rousselle, P.; Thiery, J. P.; Glukhova, M. A. Cell-extracellular matrix interactions and EGF are important regulators of the basal mammary epithelial cell phenotype. J. Cell Sci. 112(Pt 7):1035–1044; 1999.

    PubMed  CAS  Google Scholar 

  • Deugnier, M.-A.; Teuliere, J.; Faraldo, M. M.; Thiery, J. P.; Glukhova, M. A. The importance of being a myoepithelial cell. Breast Cancer Res. Treat. 4(6):224–230; 2002.

    CAS  Google Scholar 

  • Dontu, G.; Abdallah, W. M.; Foley, J. M.; Jackson, K. W.; Clarke, M. F.; Kawamura, M. J.; Wicha, M. S. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17(10):1253–1270; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Easty, G. C.; Easty, D. M.; Monaghan, P.; Ormerod, M. G.; Neville, A. M. Preparation and identification of human breast epithelial cells in culture. Int. J. Cancer 26(5):577–584; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Guelstein, V. I.; Tchypysheva, T. A.; Ermilova, V. D.; Litvinova, L. V.; Troyanovsky, S. M.; Bannikov, G. A. Monoclonal antibody mapping of ketatins 8 and 17 and of vimentin in normal human mammary gland, benign tumors, dysplasias and breast cancer. Int. J. Cancer 42(2):147–153; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Hay, E. D. An overview of epithelio-mesenchymal transformation. Acta Anat. 1(154):8–20; 1995.

    Article  Google Scholar 

  • Hazan, R. B.; Qiao, R.; Keren, R.; Badano, I.; Suyama, K. Cadherin switch in tumor progression. Ann. N.Y. Acad. Sci. 1014:155–163; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, K.; Smith, J. A.; Perusinghe, N.; Monoghan, P. Cell proliferation in the human mammary epithelium. Differential contribution of epithelial and myoepithelial cells. Am. J. Pathol. 124:199–206;1986.

    PubMed  CAS  Google Scholar 

  • Lakhani, S. R.; O'Hare, M. J. The mammary myoepithelial cell—Cinderella or ugly sister. Breast Cancer Res Treat. 3:1–4; 2001.

    CAS  Google Scholar 

  • Lazard, D.; Sastre, X.; Frid, M. G.; Glukhova, M. A.; Thiery, J. P.; Koteliansky, V. E. Expression of smooth muscle-specific proteins in myoepithelium and stromal fibroblasts of normal and malignant human breast fissue. J. Cell Biol. 90:999–1003; 1993.

    CAS  Google Scholar 

  • Nieman, M. T.; Prudoff, R. S.; Johnson, K. R.; Wheelock, M. J. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J. Cell Biol. 147(3):631–644; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ozzello, L. Ultrastructure of the human mammary gland. Pathol. Annu. 6:1–59; 1971.

    PubMed  CAS  Google Scholar 

  • Pachoux, C.; Gudjonsson T.; Ronnov-Jessen, L.; Bissell, M. J.; Petersen, O. W. Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev. Biol. 206:88–99; 1999.

    Article  Google Scholar 

  • Pollard, J. W. Transforming growth factor-β isoforms and hepatocyte growth factor/scatter factor in mammary gland ductal morphogenesis. Breast Cancer Res. Treat, 3(4):230–237; 2001.

    CAS  Google Scholar 

  • Robinson, G. W.; Karpf, C. A. B.; Kratochwil, K. Regulation of mammary gland development by tissue interaction. J. Mammary Gland Biol. Neoplasia 4(1):9–19; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ronnov-Jessen, L. Stromal reaction to invasive cancer: the cellular origin of the myofibroblast and implications for tumor development. Breast J. 2:320–339; 1996.

    Article  Google Scholar 

  • Rudland, P. S.; Hughes, C. M. Immunocytochemical identification of cell types in human mammary gland: variations in cellular markers are dependant on glandular topography and differentiation. Histochem. Cytochem. 7(37):1087–1100; 1989.

    Google Scholar 

  • Shekhar, M. P. V.; Pauley, R.; Heppner, G. Extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res. Treat. 5(3):130–135; 2003.

    CAS  Google Scholar 

  • Smith, G. H. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res. Treat. 39(1):21–31; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, M. S.; McNutt, P. M. Cadherins and their connections: adhesion junctions have broader functions. Curr. Opin. Cell Biol. 11(5):554–560; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht, M. D.; Kedeshian, P.; Shao, Z. M.; Safarians, S.; Barsky, S. H. The human myoepithelial cell is a natural tumor suppressor. Clin. Cancer Res. 3(11):1949–1958; 1997.

    PubMed  CAS  Google Scholar 

  • Stingl, J.; Eaves, C. J.; Kuusk, U.; Emerman, J. T. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63:201–213; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Stingl, J.; Eaves, C. J.; Zandieh, I.; Emerman, J. T. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat. 67:93–109; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sympson, C. J.; Talhouk, R. S.; Alexander, C. M.; Chin, J. R.; Clift, S. M.; Bissell, M. J.; Werb, Z. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol, 125(3):681–693; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Papadimitriou, J.; Peterson, J. A.; Arklie, J.; Burchell, J.; Ceriani, R. L.; Bodmer, W. F. Monoclonal antibodies to epithelium-specific components of the human milk fat globule membrane: production and reaction with cells in culture. Int. J. Cancer 28(1):17–21; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Papadimitriou, J.; Stampfer, M.; Bartek, J.; Lewis, A.; Boshell, M.; Lane, E. B.; Leigh, I. M. Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. J. Cell Sci. 94:403–413; 1989.

    PubMed  Google Scholar 

  • Thiery, J. P. Epithelial-mesenchymal transitions in tumor progression. Nat. Rev. Cancer 2:442–454; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Troyanovsky, S. M.; Guelstein, V. I.; Tchipysheva, T. A.; Krutovskikh, V. A.; Bannikov, G. A. Patterns of expression of keratin 17 in human epithelia: dependency on cell position. J. Cell Sci. 93(Pt 3):419–426; 1989.

    PubMed  Google Scholar 

  • Welm, B. E.; Tepera, S. B.; Venezia, T.; Graubert, T. A.; Rosen, J. M.; Goodell, M. A. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev. Biol. 245(1):42–56; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Whitehead, R. H.; Bertoncello, I.; Webber, L. M.; Pedersen, J. S. A new human breast carcinoma cell line (PMC42) with stem cell characteristics. I. Morphologic characterization. J. Natl. Cancer Inst. 70(4):649–654; 1983a.

    PubMed  CAS  Google Scholar 

  • Whitehead, R. H.; Monaghan, P.; Webber, L. M.; Bertoncello, I.; Vitali, A. A. A new human breast carcinoma cell line (PMC42) with stem cell characteristics. II. Characterization of cells growing as organoids. J. Natl. Cancer Inst. 71(6):1193–1196; 1983b.

    PubMed  CAS  Google Scholar 

  • Whitehead, R. H.; Quirck, S. J.; Vitali, A. A.; Funder, J. W.; Sutherland, R. L.; Murphy, L. C. A new human breast carcinoma cell line (PMC42) with stem cell characteristics. III. Hormone receptor status and responsiveness. J. Natl. Cancer Inst. 73(3):643–647; 1984.

    PubMed  CAS  Google Scholar 

  • Witty, J. P.; Wright, J. H. Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol. Biol. Cell 6(10):1287–1303; 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Leigh Ackland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebret, S.C., Newgreen, D.F., Waltham, M.C. et al. Myoepithelial molecular markers in human breast carcinoma PMC42-LA cells are induced by extracellular matrix and stromal cells. In Vitro Cell.Dev.Biol.-Animal 42, 298–307 (2006). https://doi.org/10.1290/0601004.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0601004.1

Key words

Navigation